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SUMMARY

The CC chemokine receptor 7 (CCR7) balances im-
munity and tolerance by homeostatic trafficking of
immune cells. In cancer, CCR7-mediated trafficking
leads to lymph node metastasis, suggesting the re-
ceptor as a promising therapeutic target. Here, we
present the crystal structure of human CCR7 fused
to the protein Sialidase NanA by using data up to
2.1 A resolution. The structure shows the ligand
Cmp2105 bound to an intracellular allosteric binding
pocket. A sulfonamide group, characteristic for
various chemokine receptor ligands, binds to a patch
of conserved residues in the Gi protein binding re-
gion between transmembrane helix 7 and helix 8.
We demonstrate how structural data can be used in
combination with a compound repository and auto-
mated thermal stability screening to identify and
modulate allosteric chemokine receptor antagonists.
We detect both novel (CS-1 and CS-2) and clinically
relevant (CXCR1-CXCR2 phase-Il antagonist Navar-
ixin) CCR7 modulators with implications for multi-
target strategies against cancer.

INTRODUCTION

A key feature of the human immune system is the ability to pro-
tect against pathogens without targeting healthy cells or tissues.
Chemotactic trafficking of the immune response is orchestrated
by 20 G protein-coupled receptors (GPCRs) and over 40 chemo-
kines that guide patrolling immune cells to the right place at the
right time. Inflammatory chemokines and their receptors are
induced upon inflammatory stimuli, whereas homeostatic che-
mokines are expressed constitutively and create “cellular high-
ways” that constantly navigate cells to specific organs. Impor-
tant homeostatic CC motif chemokine ligands are CCL19 and
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CCL21, which bind the CC chemokine receptor 7 (CCR7) to
guide B cells, T cells, and antigen-presenting dendritic cells to
lymph nodes throughout the body (Forster et al., 1999; 2008).

CCRY and its ligands are essential components in an autoim-
mune model of rheumatoid arthritis (Moschovakis et al., 2018).
Moreover, pathogenic bacteria can use CCR7-mediated migra-
tion of dendritic cells to transfer to draining lymph nodes, from
where they can spread to other organs (Forster et al., 2008;
Pron et al., 2001). CCRY7 is further associated with a wide variety
of cancers (Balkwill, 2012; Glnther et al., 2005; Miiller et al.,
2001; Shields et al., 2007), where chemotactic trafficking allows
cancer cells to spread by lymph node metastasis (Cunningham
etal., 2010; Wiley et al., 2001; Zlotnik et al., 2011). CCR7 expres-
sion in colorectal carcinoma, the second most common malig-
nant tumor worldwide (Ferlay et al., 2015), is linked to lympho-
vascular invasion and decreased survival rates (Gunther et al.,
2005). Small molecule ligands designed to silence CCR7 thus
have great potential to address lymph node metastasis, a major
cause for cancer-associated mortality.

So far it has been difficult to find a suitable variety of small
molecule ligands as starting points to develop CCR7-targeting
drugs. Furthermore, other chemokine receptors, including
CXCR1, CXCR2, CCR5, and CXCR4, have also been implicated
with cancer metastasis to specific organs (Balkwill, 2012; Mis-
han et al., 2016; Zlotnik et al., 2011) and thus might compensate
for each other if only one of them is targeted. On the other hand,
small molecules need to have a certain level of selectivity to mini-
mize side effects during treatment. Structural information is
needed to develop drugs that can fulfill these potentially conflict-
ing requirements and much effort has been devoted to deter-
mining the structures of chemokine receptors in complex with
either synthetic ligands (Oswald et al., 2016; Tan et al., 2013;
Wu et al., 2010; Zheng et al., 2016) or native chemokines (Burg
et al., 2015; Qin et al., 2015).

Despite several clinical trials, only a few drugs have been
approved for the large and highly polar orthosteric chemokine
binding pocket (Horuk, 2009; Solari et al., 2015). Spatially distinct
allosteric sites in chemokine receptors (Oswald et al., 2016;
[ |
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Zheng et al., 2016) and other GPCRs (Thal et al., 2018) are more
compact and promise higher sub-type selectivity than orthosteric
sites and are thus widely discussed as exciting possibilities in
modern drug discovery (Hauser et al., 2017). Here, we present
the crystal structure of CCR7 bound to the allosteric antagonist
Cmp2105. This small molecule contains a thiadiazole-dioxide
scaffold, which was developed and patented as a potent motif
to target CXC- and CC-chemokine receptors (Taveras et al.,
2010). We conclude from new ligands found by 3D shape similar-
ity screenings and verified by automated thermofluor screening
(Mattle et al., 2018) that thiadiazole-dioxide, thiazole-dioxide, or
cyclobutene-dione motifs are key for interacting with a conserved
transmembrane helix 7-helix 8 (TM7-H8) protein patch in the Gi
protein binding site in CCR7 and other chemokine receptors.
Our results suggest this conserved motif as a promising hotspot
for targeting chemokine receptors with pharmaceuticals.

Structure Determination

Increasing the hydrophilic surface area by using fusion proteins
(Chun et al., 2012) such as T4 lysozyme (Cherezov et al., 2007;
Rosenbaum et al., 2007) is one of the most successful crystalli-
zation strategies for GPCRs. Because T4 lysozyme fusions failed
to produce crystals in this study and to extend the toolbox for
membrane protein crystallization, we identified 17 soluble pro-
teins with optimal properties to facilitate crystallization of
CCRY (Figure S1). Out of five novel fusion constructs expressing
at high amounts, three yielded crystals. The construct with the
largest fusion protein Sialidase NanA (52.8 kDa) resulted in the
most promising diffraction patterns. Further optimization al-
lowed us to collect X-ray crystallographic data to a resolution
up to 2.1 A (Table S1). We employed molecular replacement
combined with native single-wavelength anomalous dispersion
(SAD) data obtained in a serial-scanning approach (Huang
et al., 2018) to determine the structure of the human CCR7 (Fig-
ures 1, S2, and S3). Superposition of the CCR7 seven transmem-

Figure 1. Structure of CCR7 Bound to
Cmp2105

The human CCR7 shares the seven trans-
membrane (TM1-TM7) helical fold of GPCRs
where helices are connected by three intracellular
(ICL) and three extracellular (ECL) loops. A short
aliphatic helix (H8) anchors CCR7 in the cyto-
plasmic side of the membrane. CCR7 (light blue)
viewed in parallel to (A) and from the extracellular
(B) and intracellular (C) sides of the membrane
(indicated by gray boundaries). The connecting
linkers to the fusion protein are labeled (yellow)
with two unresolved residues indicated as dashed
lines. The small molecule antagonist Cmp2105
(green sticks) binds at the intracellular side of
CCRY7, similar as described for binding of Cmpd-
15PA to the B2-adrenergic receptor, binding of
CCR2-RA-[R] to CCR2 and binding of Vercirnon
to CCR9.

brane helical bundle with that of other hu-
man chemokine receptors (CCR2 [Zheng
et al,, 2016], CCR5 [Tan et al., 2013],
CCR9 [Oswald et al., 2016], and CXCR4
[Wu et al., 2010]) yields Co. root mean square deviations between
1.28 A and 1.97 A in accordance with sequence identities be-
tween 29.9% and 39.1% (Figure S4). Sequence and structural
differences between the receptors are higher in the orthosteric
chemokine binding pocket, on the extracellular half, than in the
intracellular side, which opens upon activation to accommodate
arrestin and G protein, the two major GPCR signaling proteins.

Intracellular Allosteric Antagonism

GPCRs are intrinsically allosteric proteins that tightly couple the
intracellular and extracellular halves of their 7TM bundle to fulfill
their function in cellular signaling (Thal et al., 2018). Such a coop-
erative effect is highly desirable for cancer therapies targeting
CCRY7, given that it allows for more opportunities to inactivate
the receptor to prevent trafficking by chemokines and thus block
metastasis through the lymphatic system.

To date, very few small molecule ligands for CCR7 have been
described. However, a large group of patented thiadiazole-di-
oxides contain four very similar small molecule compounds
that bind CCR7 with nanomolar affinity (Taveras et al., 2010)
(Figure S5). We purified and crystallized CCR7 in the presence
of the thiadiazole-dioxide ligand Cmp2105. The addition of this
small molecule ligand results in a strong stabilizing effect of up
to 20.1°C on CCR7 (Figure 2A) in thermofluor experiments.
Such a strong stabilizing effect is not untypical for a high-affinity
binder. For example, the cellular entry inhibitor Maraviroc ex-
erts a similar stabilizing effect of up to 18.9°C on the related
CCR5 receptor (Knepp et al., 2011). Accordingly, we measured
a half maximal inhibitory concentration (ICso) of 35 nM for
Cmp215 in membrane-based competition experiments with
radioactively labeled CCL19. Because Cmp2105 outcompeted
the native protein ligand CCL19 and was classified as an antag-
onist to G protein activation (Taveras et al., 2010), we initially
expected it to bind the orthosteric chemokine binding pocket.
However, our structure showed Cmp2105 bound to a pocket
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Figure 2. Cmp2105 Exerts Intracellular Allosteric Inhibition of CCR7

(A) Thermal-shift assays (top) verify binding of Cmp2105 to CCRY7. Increasing concentrations of Cmp2105 reveal a strong dose-dependent stabilizing effect on
CCRY7 of up t0 20.1°C (mean + SEM from 3 independent experiments with 3 measurements each). Cmp2105 allosterically inhibits binding of the native chemokine
CCL19 ligand in scintillation proximity assays (bottom) with a half inhibitory concentration (ICso) of 35 nM.

(B) Overlay of the CCRY7 structure with the position of the Ga; subunit (Kang et al., 2018) (red) or arrestin (Kang et al., 2015) (purple) in structures of rhodopsin
signaling complexes. The comparison places Cmp2105 (green; sticks and spheres) in a position where it interferes with binding of these GPCR effector proteins.
(C) A structural comparison with the inactive conformation of CCR2 (Zheng et al., 2016) and the active conformation of the viral US28 with bound chemokine
(Burg et al., 2015) suggests Cmp2105 to stabilize an inactive CCR7 conformation with closed intracellular effector binding site. View from the cytoplasmic side
with arrows indicating relative positions in the inactive and active GPCR conformation. Our assignment to a deactivated CCRY7 is further confirmed by a putative
sodium ion in a conserved site between TM2, TM3, TM6, and TM7, which is known to negatively modulate activity in many GPCRs (Liu et al., 2012). Our results
thus show how Cmp2105 exerts allosteric antagonism close to the intracellular G protein binding pocket of CCR7.

at the intracellular part of CCR7 between the ends of TM1, TM2,
TMS3, and TM6 and the loop between TM7 and H8; this was
similar to what was seen for CCR2-RA-[R] in CCR2 (Zheng
et al., 2016), Vercirnon in CCR9 (Oswald et al., 2016), and
Cmpd-15PA in the B2-adrenergic receptor (Liu et al., 2017).
Cmp2105 stabilizes an inactive CCR7 conformation as evi-
denced by comparisons of our structure with the activated
conformation of the CX3CL1-chemokine-bound viral US28 re-
ceptor (Burg et al., 2015) and the inactive conformation of the
CCR2 receptor, with orthosteric and allosteric antagonists
(Zheng et al., 2016) (Figure 2). Based on an overlay with the
rhodopsin-Gi protein complex (Kang et al., 2018) and the
rhodopsin-arrestin complex (Kang et al., 2015), the intracellular
binding pocket spatially overlaps with the intracellular effector
binding site of CCR7. Together with the inhibitory effect on
CCL19 binding, the structural comparisons identify Cmp2105
as an intracellular allosteric antagonist. The binding site thus
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represents an attractive opportunity to silence CCR7 with small
molecule ligands.

Cmp2105 Binding Mode

Cmp2105 is composed of a thiadiazole-dioxide core motif with
two amine-linked substituents that can be exchanged to modu-
late binding affinity to CCR7 (Taveras et al., 2010) (Figure S5).
The substituents form interactions to several residues in TM2
(including hydrogen bonds to Thr91%%7 and Thr9323% and TM1
(mainly hydrophobic Val79'®2, Thr82'-®®, and Phe86'?). They
further bridge well-conserved residues including Arg1543%° of
the ERY motif in TM3 and Tyr3267-5% of the NPxxY motif in
TM7 (Figures 3A and 3D; Table S2), both part of the cytoplasmic
cleft that opens upon GPCR activation (Scheerer et al., 2008).
The partial overlap with the G protein binding site, in addition
to the Cmp2105 receptor interactions, hinder large conforma-
tional changes that are required for receptor activation.
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Figure 3. Binding Mode Comparison for Cmp2105 (CCR7), CCR2-RA-[R] (CCR2), and Vercirnon (CCR9)

(A-C) Schematic ligand interaction profiles with protein residues colored according to their chemical nature (hydrophobic in green, polar in pink, acidic in red, and
basic in blue). Dotted green lines represent regions with hydrophobic interactions.

(D-F) Structural comparison of the CCR7 allosteric binding pocket with those of CCR2 and CCR9 reveals strong similarities in allosteric chemokine receptor
ligand binding to a conserved patch of residues in the TM7-H8 turn (CCR7 in blue, CCR2 in yellow, and CCR9 in orange).

(G) Summary of interatomic contacts (defined as pair of atoms with < 4 A distance) in the allosteric binding pocket with CCR2-RA-[R] (PDB: 5T1A), Vercirnon
(PDB: 5LWE), and a selection of GPCR-effector complexes (PDB: 3SN6, 6CMO, and 5DGY). Residues are shown in single-letter code with critical sites
emphasized with bold letters. The grayscale indicates the number of contacts to the respective ligand or effector protein.

The two amino groups of Cmp2105 form hydrogen bonds with
Asp9424° indicating a central rolein positioning the central core
motif. The sulfonyl group interacts with a conserved patch of res-
idues at the turn between TM7 and H8 (Tyr3267-°3, Gly330%47,
Val331848 | ys33284° and Phe333%%%). Gly330%47 at the very
end of TM8 is conserved among most human chemokine recep-
tors (except CXCR6 and CXCRY7) and allows the tight interhelical
joint of the pocket to form. Mutations of residues Tyr’®® and

Phe®?° in rhodopsin substantially reduce binding to Gat (Fritze
et al., 2003), and the recent cryo-EM structures of Gi/o-receptor
complexes (Draper-Joyce et al., 2018; Garcia-Nafria et al., 2018;
Kang et al., 2018; Koehl et al., 2018) show how G protein selec-
tivity is mediated by how their C termini approach the conserved
motifs within the intracellular cleft including selective interactions
with TM7-H8 (Tsai et al., 2018). In the structure of CCR9 (Oswald
et al., 2016), the TM7-H8 motif binds a sulfonamide group of the
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Figure 4. Focused Screening and Structural Diversity of Chemokine Receptor Ligands

(A) 293 compounds were selected by virtual screening from Roche’s compound repository and tested experimentally for their ability to thermally stabilize CCR7.
The graph plots the difference in thermal stability in presence of 50 uM ligand (black dots mean + SEM from 3 determinations) to the DMSO control. Potentially
stabilizing ligands are colored orange and hits above the combined standard deviation of DMSO and ligand are red.

(B) To probe the selectivity of the binding pocket, we tested and analyzed a series of known chemokine receptor ligands and positive hits from virtual and semi-
automated thermofluor screening (mean + SEM from 3 measurements) (Mattle et al., 2018). The dashed vertical line divides measurements from the automated
thermofluor assay and separate measurements with selected ligands.

(C) Selection of allosteric small molecule ligands against chemokine receptors tested for their effect on CCR7. The central core motif binding the TM7-H8 motif is
highlighted.

(D and E) Docking of Navarixin and CS-1 into the allosteric CCR7 binding pocket. The TM7-H8 joint is shown in blue and selected key residues are drawn as sticks.
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Figure 5. Cellular Arrestin Recruitment
Assay and Dose Response Thermofluor
Assay

(A) Dose response curves with the native agonist
CCL19 (green, circles) show arrestin binding with a
half effective concentration (ECso) of 0.012 uM.
(B) Addition of the allosteric inhibitor Cmp2105
(red, circles) or Navarixin (orange, squares) sup-
presses arrestin binding in response to activation

—— Cmp2105

1 by CCL19 with half inhibitory concentrations (ICso)
of 7.3 pM and 33.9 uM respectively. Data points
are the mean of two independent measurements
and are normalized to the maximal response.

(C) Dose-dependent thermo-stabilizing effect of
Cmp2105 on CCRY7. Results from 3 independent
experiemnts with 3 measurements each (mean +
SEM) were fitted to extract the maximal stabilizing
effect and half effective concentration of 0.48 uM
for Cmp2105.

(D) Dose-dependent thermo-stabilizing effect of
Navarixin on CCR7. Results from three independent
experiments with three measurements each (mean
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ligand Vercirnon (Figures 3C and 3F), whereas the hydroxy-pyr-
rolinone ring of CCR2-RA-[R] occupies the equivalent position in
CCR2 (Zheng et al., 2016) (Figures 3B and 3E). The conserved
TM7-H8 patch (Figure 3G) within the allosteric binding pocket
thus seems a promising hotspot for targeting Gai binding che-
mokine receptors in agreement with the large variety of potent
molecules in the thiadiazole-dioxide series of CXC- and CC-che-
mokine receptor ligands.

Modulating Allosteric Ligand Recognition
The similarity in how chemokine receptor ligands approach the Gi
protein binding site in CCR2, CCR7, and CCR9 is striking. All li-
gands interact with the conserved TM7-H8 motif in their respec-
tive receptors. Nevertheless, CCR2-RA-[R] and Vercirnon did not
have a thermo-stabilizing effect on CCR7, despite their similar in-
teractions to the TM7-H8 motif in other receptors. Neither did the
CXCR2 antagonist Danirixin nor the CXCR1 and CXCR2 antago-
nist Reparixin stabilize CCR7, although both molecules contain
the characteristic sulfonamide group found in a number of che-
mokine ligands. Moreover, orthosteric ligands such as the
CCR5 antagonist Maraviroc and the CXCR4 antagonist [T1t did
not affect CCR7 (Figure 4B). This raises the question of what de-
fines selectivity for allosteric ligands in chemokine receptors?
To address this question, we conducted a 3D shape similarity
search among the 2.3 million compounds of the Roche repository.
We used Cmp2105 as a seed in a focused screen to identify li-
gands with different topologies but a similar 3D pharmacophore.
A selection of 293 fitting compounds were choosen for thermal
stability assays (Figure 4A) via the automated methodology we
developed originally to identify pharmacological chaperones
binding to rhodopsin (Mattle et al., 2018). This combined
approach revealed a series of potentially stabilizing molecules
above the standard deviation of the dimethyl sulfoxide (DMSO)
control, from which we selected the strongest two for further

Navarixin [uM]

+ SEM) were fitted to extract the maximal stabilizing
effect and half effective concentrations of 13.38 uM
for Navarixin.

investigation. Molecule CS-1 (Figure 4C) contains the character-
istic cyclic sulfone; however, the exit vectors are no longer adja-
cent and lack the secondary amines found in Cmp2105. Molecular
docking places it into the allosteric binding pocket with the sulfo-
nyl group facing the TM7-H8 joint (Figure 4D). No hydrogen bonds
are available for interaction with Asp94%4° or other nearby resi-
dues.. This explains the smaller stabilizing effect of 2.4°C of this
ligand but also demonstrates the importance of the interaction
to the TM7-H8 core motif to approach the receptor.

The second hit is of special interest because it is known as
Navarixin (or SCH-527123 or MK-7123), a potent and bioavail-
able antagonist for CXCR1 and CXCR2 (Dwyer et al., 2006).
The left- and right-hand substituents are almost identical to
Cmp2105, but the central thiadiazole-dioxide core of Navarixin
is replaced by a cyclobutene-dione. Molecular docking experi-
ments place Navarixin into a similar position as Cmp2105, where
it interacts with the TM7-H8 motif as well as with Asp942-4°. The
only significant difference is the interaction of the dione in Navar-
ixin versus the sulfonyl group in Cmp2105 (Figure 4E). The sec-
ond carbonyl group of Navarixin cannot form a hydrogen bond
with the protein. This could explain why the overall stabilizing ef-
fect is lower in thermal stability experiments (4°C compared with
20.1°C) and the half maximal inhibitory concentration (ICsc) in
cellular CCL19 competition assays is reduced (33.9 uM for Nav-
arixin in comparison with 7.3 uM for Cmp2105) (Figures 5A and
5B). Overall, docking results agree well both with dose-response
thermal-shift (Figures 5C and 5D) assays and the allosteric mod-
ulation of signaling in a cellular environment. Navarixin is thus
validated as a biologically active allosteric antagonist for CCR7.

Clearly this part of the allosteric pocket can be targeted with
a large chemical variety of small molecules to prevent binding
of intracellular effector proteins. The selectivity of ligands
can be tuned by changing the core motif by using a thiadia-
zole-dioxide (CCR7-Cmp2105), thiazole-dioxide (CCR7-CS-1),
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a cyclobutene-dione (CXCR1,CXCR2, and CCR7-Navarixin), a
hydroxy-pyrrolinone (CCR2-CCR2-RA-[R]), or just the sulfon-
amide group alone (CCR9-Vercirnon). Once binding to the
receptor with a chosen core-motif is established, near endless
variations of the ligands can be achieved by modifying the sub-
stituents to fine-tune selectivity to a single or a subset of chemo-
kine receptors.

CONCLUSIONS

Due to their implications with cancer metastasis and their roles in
the pathogenesis of autoimmune diseases, inflammation, and
viral infections, chemokine receptors are important targets for
pharmaceutical intervention. Despite considerable efforts, only
two small molecule drugs targeting chemokine receptors are on
the market today: Plerixafor (CXCR4) for stem-cell mobilization
(Steinberg and Silva, 2010) and Maraviroc (CCR5) for HIV infection
(Woollard and Kanmogne, 2015). Clinical failures for drugs that
target chemokine receptors often result from low efficacy, low
selectivity, as well as redundancies in chemokine signaling, in
which the inhibition of one receptor has no significant effect
because of the cell’s ability to compensate for that signaling
pathway. These efforts should be reignited, considering recent in-
sights from molecular structures and the emerging concept of us-
ing allosteric ligands to modulate GPCR signaling. The well-
conserved allosteric Gi protein binding pocket on the intracellular
side is a particularly interesting pharmacological target and offers
advantages in comparison to the orthosteric chemokine binding
pocket, as ligand selectivity can be tuned to target a single sub-
type or a selection of chemokine receptors. The structure elucida-
tion of CCR7 and the validation of the allosteric binding pocket
opens a new avenue to a structure-based design approach for
finding novel small molecule ligands to silence chemokine recep-
tors. Our study demonstrates this approach and presents a sur-
prising result that Navarixin binds an allosteric pocket in CCR7.
Navarixin is currently tested in phase Il clinical trials (http//
.clinicaltrials.gov) for its anti-metastatic effect on colorectal and
other aggressive cancers (Ning et al., 2012; Varney et al., 2011).
Considering the role of CCR7 in metastasis, it is not difficult to
imagine that part of the Navarixin anticancer effects are due to
silencing CCRY7 instead of it acting solely via CXCR1/CXCR2.
Drugs binding multiple targets have long been flagged as undesir-
able, as it was assumed this inherently leads to adverse side ef-
fects. However, a multi-target drug can also be beneficial in sce-
narios where redundant biological pathways lead to a
compensation and resistance to single-target therapies (Ramsay
et al., 2018). The identification of ligands for the relatively
conserved and compact allosteric binding pocket in a subset of
homeostatic chemokine receptors might thus be the best
approach for alleviating multifaceted maladies such as cancer.
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STARXMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Bacterial and Virus Strains

Bac-to-Bac baculovirus expression system ThermoFisher Cat#10359016
E.coli: MAX Efficiency™ DH10Bac ThermoFisher Cat#10361012
Competent Cells

Chemicals, Peptides, and Recombinant Proteins

Sf900-I1l medium ThermoFisher Cat#12658027
His-tagged human Rhinovirus 3C protease Cordingley et al., 1990 N/A

(HRV 3C)

7-Diethylamino-3-(4’-Maleimidylphenyl)-4- ThermoFisher Cat#D346
Methylcoumarin (CPM)

ChemiSCREEN™ CCR7 Membrane preparations Millipore N/A
PVT-PEI-WGA Type B SPA beads Perkin Elmer Cat#RPNQ0004
human CCL19 Prospec Cat#CHM-374
radioactively labeled human CCL19 R&D Systems N/A
n-Dodecyl-B-D-Maltopyranoside Anatrace Cat#D310
Cholesteryl Hemisuccinate Tris Salt Anatrace Cat#CH210
TALON Superflow Metal Affinity Resin TaKaRa Cat#635507
NiNTA Sepharose resin Iba lifesciences Cat#2-3201
Cmp2105 Roche N/A

Navarixin MedKoo Cat#206586
CS-1 Roche N/A

CS-2 Roche N/A

Polyethylene Glycol 500 MME Molecular Dimension Cat#MD2-100-66
Monoolein Nu-Check Prep Cat#M-239
Ammonium tartrate dibasic Sigma-Aldrich Cat#09985
Magnesium Chloride Hexahydrate Sigma-Aldrich Cat#M9272
Potassium Chloride VWR Cat#26764.298
HEPES Gerbu Cat#1009
Sodium Hydroxide VWR Cat#28244.295
Sodium Chloride Fisher Chemical Cat#10598630
MES Gerbu Cat#1080

Bis-tris Gerbu Cat#1304
Glutathione (GSH) Sigma-Aldrich Cat#G4251
Glutathione disulfide (GSSG) Sigma-Aldrich Cat#G4376
Imidazole Merck Cat#814223
Calcium chloride dihydrate Acros Organics Cat#207780010
Bovine Serum Albumin Fraction V Sigma-Aldrich Cat#10735086001
cOmplete™ Protease Inhibitor Cocktail Sigma-Aldrich Cat#11697498001
Critical Commercial Assays

PathHunter eXpress CCR7 CHO-K1 B-Arrestin Assay Eurofins Cat#93-0195E2CPOM
cAMP Hunter eXpress CCR7 CHO-K1 GPCR Assay Eurofins Cat#95-0070E2CP2S

Deposited Data

CCRY Crystal Structure

This manuscript

PDB: 6QZH

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER
Experimental Models: Cell Lines

Spodoptera frugiperda Sf9 cells Invitrogen Cat#11496-015
Oligonucleotides

Primer pUC/M13 Forward: Microsynth N/A
CCCAGTCACGACGTTGTAAAACG

Primer pUC/M13 Reverse: Microsynth N/A
AGCGGATAACAATTTCACACAGG

Recombinant DNA

CCR7-Sialidase construct This manuscript N/A

Software and Algorithms

COOoT Emsley and Cowtan, 2004 N/A

XDS Kabsch, 2010 N/A

Phaser McCoy et al., 2007 N/A

Phenix Adams et al., 2002 N/A

Pipeline Pilot Dassault Systemes BIOVIA www.3dsbiovia.com
FastROCS OpenEye Scientific Software www.eyesopen.com
GOLD CCDC, Jones et al., 1997 N/A

Prism GraphPad www.graphpad.com
UCSF Chimera Pettersen et al., 2004 N/A

LigPlot+ Laskowski and Swindells, 2011 N/A

Other

Laminex sandwich glass or plastic plates Laminex, Molecular Dimensions MD11-50-100

20 | Cell-bag Disposal Bioreactors
Mosquito LCP dispensing robot

Hamilton syringes 100 pl
MiTeGen micromounts

PD10 desalting column

Vivaspin 20, 100.000 MWCO PES

Wave Biotech/GE life sciences
TTP Labtech

Hamilton
MiTeGen
GE Healthcare
Sartorius

Cat#CB0020L10-01

https://www.ttplabtech.com/products/
liquid-handling/mosquito-lcp/
Cat#81065

Cat#M2-L18SP

Cat#17085101

Cat#VS2041

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for reagents should be directed to and will be fulfilled by the Lead Contact Joerg Standfuss
(joerg.standfuss@psi.ch).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The Bac-to-Bac baculovirus expression system (Invitrogen) was used to generate high-titer recombinant baculovirus. Sf9 cells at a
density of 2 x 10° cells/mL in SF-4 Baculo Express ICM medium (BioConcept) were infected at a multiplicity of infection of 0.01%-
5% (v/v) depending on the virus strength. The cells were shaken in culture flasks (800 mL per 2 L Erlenmeyer flask) for 72 h at 27°C and
120 rpm. The cell pellet was harvested by centrifugation (3000 x g, 20 min, 4°C) and stored at —80°C.

Cellular CCRY7 G protein activation assays were performed using the cAMP Hunter CHO-K1 CCR7 G; Cell Line (Eurofins). Cellular
CCRY7 arrestin recruitment assays were done using the PathHunter® eXpress CCR7 CHO-K1 B-Arrestin GPCR Assay (Eurofins). Both
assays were performed by Eurofins using standard protocols and relying on CCL19 as activating agonist.

METHODS DETAILS
CCR?7 Constructs and Expression

The wild type human CCR7 DNA sequence was optimized for insect cell expression and cloned into a pFastBac vector (Invitrogen).
The receptor sequence (residues 1-348) was fused with enhanced green fluorescent protein (Cormack et al., 1996) for monitoring
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expression, followed by a C-terminal decahistidine-tag for purification. A tryptophan point mutation (L145W) was introduced to
improve the thermal stability of the receptor (Roth et al., 2008). In the crystallization construct, two cleavage sites for human
Rhinovirus 3C protease (Cordingley et al., 1990) have been introduced to cut the N- and C terminus between residue 36-43 and
352-359, respectively. In addition, residues Arg248%%3-Phe256'°“® have been deleted to introduce residues 1-470 of Sialidase
NanA fusion protein (PDB: 2ya4) flanked by a linker (Ser248-Lys-Leu-His-IP9-Ser-Lys-Gly-His256) on each side (Figure S1).

The CCRY7 was expressed in 10| scale in 20 | Cell-bag Disposal Bioreactors (Wave Biotech/GE life sciences) at 27°C and 19 rocks/
min in a 40% oxygen atmosphere. Typically, 2 x 10° Sf9 cells/mL Sf900-11l medium (Invitrogen) at a viability of > 97% and an average
diameter of 17-17.5 um were infected with a volume of infection (VOI) of 0.1%-5% depending on the virus strength. The protein pro-
duction was aborted at cell counts of 3-3.5 x 10° cells/mL, a cell viability of ~80% and an average diameter of 20.5-21.5 um. This led
to a fermentation of about 72 h. Cells were pelleted and then stored at —80°C until purification.

Purification of Sf9-Expressed CCR7 Constructs for Crystallization

All purification steps were performed at 4°C unless stated otherwise. For cell lysis, frozen cell pellets were thawed in a
hypotonic buffer containing 10 mM HEPES/NaOH pH 7.5, 10 mM MgCl,, 20 mM KCI, Complete protease inhibitor (Roche)
(1 tablet/100 mL) while stirring at 300 rpm. Cell membranes were disrupted by dounce homogenization and isolated using
ultracentrifugation (234788 x g, 45 min, 4°C, Beckmann Optima-80 XE-100, rotor Ti45). Extensive washing of the membranes
was performed by repeated resuspension and centrifugation with low salt buffer (10 mM HEPES/NaOH pH 7.5, 10 mM MgCl,,
20 mM KCI, Roche protease inhibitor tablets (1/100 mL) (1x), a high osmotic high salt buffer (10 mM HEPES/NaOH pH 7.5,
10 mM MgCl,, 20 mM KCI, 1 M NaCl) (2x) and low salt buffer (1x) to remove the high salt content. Purified membranes
were resuspended in low salt buffer to a concentration of 1 g/mL, flash frozen in liquid nitrogen and stored at —80°C until
further use.

At the purification day, membranes were thawed in water at room temperature and treated with 23 uM Cmp2105, 2 mg/mL
iodoacetamide and Complete protease inhibitor (Roche) (1 tablet/50 mL). The membranes were incubated at 4°C for 1 h and sol-
ubilized in 50 mM HEPES/NaOH pH 7.5, 300 mM NaCl, 20 mM imidazole/HCI pH 7.5, 1% (w/v) DDM, 0.2% (w/v) CHS, 23 uM
Cmp2105 and Complete protease inhibitor (1 tablet/50 mL) keeping a 1:1.75 ratio (amount of biomass to final volume). The mixture
was stirred for 1 h at 4°C and 600 rpm and the supernatant was isolated by ultracentrifugation (234788 x g, 1 h, 4°C, Beckmann
Optima-80 XE-100, rotor Ti45). The supernatant containing the solubilized receptor was incubated with pre-equilibrated Talon
Superflow resin (TaKaRa, approximately 0.3 mL of resin was used for 1 g original cell pellet) and the mixture was stirred for
60 min at 4°C and 600 rpm. After binding, the resin was poured into a Falcon tube, centrifuged (500 x g, 2 min, 4°C, Eppendorf
5801 R) and washed with 10 x 2 column volumes (CV) wash buffer (50 mM HEPES/NaOH pH 7.5, 300 mM NaCl, 20 mM imid-
azole/HCI pH 7.5, 0.03/0.006% (w/v) DDM/CHS, 2 uM Cmp2105) in batch mode. The resin was packed into a XK16 column
(GE Healthcare) column connected to a FPLC system (AKTA Prime, GE Healthcare) in a cooling cabinet. The resin was washed
with 1 CV 20 mM imidazole and 1 CV 40 mM imidazole and then eluted in 1.5 CV 50 mM HEPES/NaOH pH 7.5, 300 mM NaCl,
200 mM imidazole/HCI pH 7.5, 0.03/0.006% (w/v) DDM/CHS, 2 uM Cmp2105. The eluted receptor was incubated with His-tagged
human Rhinovirus 3C protease (HRV 3C) (in-house, 1:10 molar ratio protease:receptor) overnight in order to cleave off the N ter-
minus and C-terminal GFP fusion and decahistidine-tag. The receptor was concentrated to a volume of < 2.5 mL using a 100 kDa
molecular weight cut-off Vivaspin concentrator (Sartorius) and subsequently exchanged into a buffer containing 25 mM HEPES/
NaOH pH 7.5, 150 mM NacCl, 0.03/0.006% (w/v) DDM/CHS, 2 uM Cmp2105 using a PD10 desalting column (GE Healthcare). The
receptor was further purified by removing the C-terminal His-tagged GFP and the 3C HRV protease using NiNTA Sepharose resin
(Iba lifesciences, 1 mL of resin per 12 mg of receptor). The pure receptor was collected as the Ni-NTA column flow-through and
concentrated to 25 mg/mL. In between, the receptor was supplemented with Cmp2105 to a final concentration of 100 uM when it
had reached a volume of about 1 mL. The pure, highly concentrated receptor was flash frozen in liquid nitrogen and stored
at —80°C.

Lipidic Cubic Phase Crystallization

Prior to crystallization, the receptor was treated with 2 mM Cmp2105, incubated for 30 min on ice and reconstituted into lipidic cubic
phase (LCP) using premixed molten monoolein (90% v/v)/ cholesterol (10% v/v) and two coupled Hamilton syringes. The lipid recon-
stitution and following steps were performed at room temperature (19-22°C). The final mixture contained 40% (v/v) protein solution,
54% (v/v) monoolein, and 6% (v/v) cholesterol. Crystallization trials were set up as 15 nL of protein-laden LCP and 800 nL of precip-
itant solution per well in 96-well Laminex sandwich glass or plastic plates (Laminex, Molecular Dimensions) using a Mosquito LCP
dispensing robot (TTP Labtech) with a humidity chamber set to 70% humidity. Plates were incubated and imaged at 20°C using
an automated imager (Rocklmager 1000, Formulatrix).

Diffraction quality crystals grew in 23%-27% (v/v) PEG 500 MME, 100 mM ammonium tartrate dibasic, 200 mM MES pH 6.0 or
100 mM Bis-tris pH 5.7, and with the addition of either 2.5 mM GSH (glutathione), 1-2.5 mM GSSG (glutathione disulfide) or
1-5 mM GSH/GSSG. Crystals of near cubic shape usually grew to a maximum size of 10-15 x 10-20 x 10-25 um® within
7-10days at 20°C. Crystals were harvested from the LCP matrix using MiTeGen micromounts and flash frozen in liquid nitrogen ready
for data collection.
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Data Collection, Processing & Structure Determination

Crystallographic data were collected at the X06SA (PXI) beamline at the Swiss Light Source usinga 5 x 5 um? collimated X-ray beam.
Rastering for crystal centering was done using 0.03 s exposure, 90% transmission, 0.0° oscillation and a detector distance of
300 mm. Individual crystals were centered for data collection and data were collected with an exposure time of 0.025 s at 40% trans-
mission with 0.05° oscillation and a detector distance of 300 mm. Data from 11 crystals were processed and integrated with XDS
(Kabsch, 2010) and subject to STARANISO (http://staraniso.globalphasing.org/cgi-bin/staraniso.cgi) analysis for scaling and merg-
ing of the data. Data anisotropy appears to be a direct consequence of the rigid insertion protein packing along the a- and b- axes and
the conformationally less restrained receptor, packing along the c-axis (Figure S2). Phaser (McCoy et al., 2007) was used to find the
initial phase information using a homology model of CCR7 and a structure of the Sialidase NanA fusion protein (pdb code: 2YA4) as
separate search models. The electron density was readily interpreted for the complete Sialidase NanA fusion, whereas parts of the
linker and CCR7 (N-terminal residues 1-53, ICL2 residues 160-164 and ECLS3 residues 289-298) were disordered. The model was
refined with Phenix (Adams et al., 2002), using Rosetta refinement (DiMaio et al., 2013) in initial stages, followed by visual examination
and rebuilding of the refined coordinates in COOT (Emsley and Cowtan, 2004) using anomalous differences as a guideline for placing
the CCRY7 sequence.

Virtual Screening and Molecular Docking

Using Cmp2105 as a seed compound, a substructure and 2D similarity search within the Roche compound repository was per-
formed in Pipeline Pilot (Dassault Systemes BIOVIA) with the extended connectivity fingerprints ECFP-6 and a Tanimoto
threshold of 0.4. In addition, a 3D shape similarity search with FastROCS was carried out (OpenEye Scientific Software, Santa
Fe, NM, USA. http://www.eyesopen.com). After experimental verification using thermofluor assays (see below) docking exper-
iments were performed with the software GOLD (Jones et al., 1997) from CCDC with default settings. The best 10 docking
poses were examined visually to select the most reasonable docking mode with respect to molecular interactions and internal
conformational strain.

Thermofluor Stability Assays
The CCRY constructs used for thermofluor stability assays were based on CCR7-L145W without the fusion protein and were ex-
pressed and purified as described above. For the generation of dose-response curves, 59 pL of purified CCR7-L145W apo-receptor
at a concentration of 0.524 M were distributed into the wells of a 96 well PCR plate on ice and 1.51 uL of a compound stock solution
(at 0.1 uM -2 mM) was added to each well, resulting in a final concentration of 0.0025 — 200 uM. The plate was sealed and incubated
for 30 min on ice. A 1:100 (v/v) working solution of the CPM (N-[4-(7-diethylamino-4-methyl-3-coumarinyl)phenyl]maleimide) dye
stock (83 mg/mL in DMSO) was prepared and 5.14 pL of this solution were added to each well and mixed thoroughly. Out of each
well, 3 x 20 uL were distributed into 0.1 mL Rotor-Gene Q tubes (QIAGEN). The melting profiles were recorded using a real-time
PCR machine (Rotor-Gene Q, QIAGEN) with temperature ramping from 25°C to 95°C in 1°C steps, 4 s pause after each step, an exci-
tation of 365 + 20 nm and emission of 460 + 20 nm. The gain set was determined at the beginning of the run. The melting temperature
(Tm) was calculated from the point of inflection.

The automated thermofluor assay was performed as described (Mattle et al., 2018) with 0.54 uM CCR7-L145W and 50 uM ligand
selected by virtual screening (described above). Melting curves were obtained applying a temperature gradient from 25 to 95°C and a
heating rate of 0.25°C/s. All liquid-handling steps were performed using a Bravo automated liquid handling platform and a 96LT head.

Scintillation Proximity Assay

Scintillation proximity assays (SPA) were carried out in 96 well plates (Optiplate, Perkin Elmer) using ChemiSCREEN CCR7
Membrane preparations (Millipore), PVT-PEI-WGA Type B SPA beads (Perkin Elmer) and a mixture of radioactively labeled
(2200 Ci/mmole, R&D Systems or Perkin Elmer) and non-labeled human CCL19 (Prospec). Reactions took place in 50 mM TRIS,
5 mM MgCI2, 1 mM CaCl2, 50 mM NaCl, 0.1% BSA, pH 7.6 supplemented with a CCR7 cell membrane/SPA beads mix
(0.5 mg/well) and serially diluted non-labeled CCL19 (0.01 nM to 30 nM final conc.) or serially diluted Cmp2105 (1 nM to 10 pM)
together with 0.05 nM labeled CCL19 in all wells. Assays were incubated for 1 h at room temperature before values were read out
using a top count scintillation counter.

Cellular Arrestin Recruitment Assay

Arrestin recruitment was measured using the PathHunter® B-Arrestin assay (contracted to Eurofins). PathHunter® eXpress CCR7
CHO-K1 B-Arrestin cells were expanded from freezer stocks. Cells were seeded in a total volume of 20 uL Assay Complete Cell
Plating Reagent (Eurofins) into white walled, 384-well microplates and incubated at 37°C. For agonist dose response curves, cells
were incubated with CCL19 dissolved in DMSO (final concentration 1%) for 90 min at 37°C. For the negative allosteric modulation
format, cells were pre-incubated with varying concentrations of either Cmp2105 or Navarixin followed by CCL19 challenge at its
ECB80 concentration (0.057 puM) for 90 min at 37°C. Assay signal was generated through a single addition of 50% v/v PathHunter
Detection reagent cocktail, followed by a one h incubation at room temperature. Microplates were read following signal generation
with a PerkinElmer Envision™ instrument for chemiluminescent signal detection.
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QUANTIFICATION AND STATISTICAL ANALYSES

ICs0 values from the scintillation proximity and cellular assays were determined using GraphPad Prism version 7.0d for Mac,
GraphPad Software, La Jolla, CA, USA, http//:www.graphpad.com.

Melting temperatures (T,,) in the thermofluor stability assays were calculated and analyzed by automated scripts based on a fit to
the Boltzmann equation. Details on significance levels and number of experiments are given in the corresponding figure legends.

DATA AND CODE AVAILABILITY

Data Resources
The accession number for the data reported in this paper is PDB: 6QZH.
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Figure S1. Related to Star Methods Section CCR7 Constructs and Expression

Schematic illustration of constructs for CCR7 crystallization screening. Six rounds of construct design and screening were carried out. Expression constructs
contained a C-terminal fusion of enhanced green fluorescent protein (eGFP) (Cormack et al., 1996) to determine expression levels followed by a decahistidine-tag
(His10) for affinity chromatography purification. Human Rhinovirus 3C protease (Cordingley et al., 1990) recognition sequences were introduced to cleave the
N- and C terminus during purification. A replacement of leucine residue at position 145 with tryptophan (Roth et al., 2008) improved thermal stability of the
receptor. A series of 17 soluble proteins were selected from the protein data bank for insertion into intracellular loop 3 based on following selection criteria: (1)
virtually parallel N- and C-termini with a distance between 6-15 A. (2) structures available at a resolution better than 2.0 A (8) no disulfide bridges or post-
translational modifications. (4) A maximum number of 600 inserted residues v) final manual verification to ensure a maximal diversity of protein folds. Six fusion
proteins (shown with name, PDB code, and molecular weight) were chosen for large scale expression of which three crystallized. The Sialidase NanA fusion
yielded the best diffracting crystals and was chosen for a final round of optimization resulting in the structure of the CCR7-Sialidase NanA fusion protein.
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Figure S2. Related to Figure 1

(A) CCR7-Sialidase NanA crystal structure with allosteric antagonist Cmp2105. The chemokine receptor CCRY (blue) is connected by two linkers in TM5 and TM6
(yellow) to the fusion protein Sialidase NanA (orange) which is located 9.2 A apart from Cmp2105. (B) Crystal lattice arrangement viewed from three different
angles. Crystal contacts exist between adjacent Sialidase NanA and the CCR7 loops ECL1 and ECL2. B-factors (red to blue) are higher for the receptor domain
(mean B-factor: 100.6 Az) than for the fusion protein (mean B-factor: 21.7 AZ). The B-factors indicate a greater flexibility of the receptor compared to the fusion
protein Sialidase NanA. Because of the few crystal contacts restraining the receptor, future studies on conformational dynamics at room temperature might be
feasible. The large size of the fusion protein may further qualify the CCR7-Sialidase NanA construct for single particle analysis using electron microscopy.
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Figure S3. Related to Figure 2

Automated serial data collection was performed to identify the location of native sulfur atoms and assist model building of CCR7. Single-wavelength anomalous
dispersion of sulfur atoms (S-SAD) is a routine phasing method (Weinert et al., 2015) that does not need derivatization of the target protein. However, the method
is challenging in cases where only weakly diffracting microcrystals are available because it requires very accurate measurements of anomalous differences
vulnerable to radiation damage. Automated serial data collection based on raster scanning of mounted mesh loops and automated selection of crystals using
X-ray diffraction at 6 keV (A) before and (B) after diffraction screening, blue to red indicates diffraction power at a 5x5 um? grid point) provides a solution to this
problem (Wojdyla et al., 2018; 2016) as the required dose can be spread over small wedges of data collected from thousands of crystals with sizes of only a few
micrometers. Diffraction data was collected on 2343 crystals within 24 h of beamtime. Data from the best 726 crystals were combined into a high multiplicity
dataset (Table S1). The anomalous signal in these data provided the position of sulfur atoms in the CCR7-Sialidase NanA fusion protein (C) (yellow spheres
indicate positions with signal above and gray below 3.0 ¢) and Cmp2105 (D) (yellow mesh, 3.0 o). Additional phase information was further used to assist structure
determination by molecular replacement. The location of Cmp2105 was confirmed by simulated annealing Fops-Fcaic 0mit maps (E) (green mesh, 2.5 o).
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Figure S4. Conservation Patterns of the CCR7 Orthosteric and Allosteric Ligand Binding Site Compared to Other Chemokine Receptors,
Related to Figure 3

(A) Small molecules can inhibit chemokine receptors through either the extracellular orthosteric binding pocket, the chemokine (e.g., CCL19/21) activation site, or
the intracellular allosteric pocket, which interacts with signaling partners like G proteins. The Ca. backbone atoms of residues in contact with small molecule
ligands in human chemokine receptors are plotted on the structure of CCR7 (spheres, conservation from blue to red). (B) lllustration of the size, shape, and
position of the small molecule binding pockets in respect to the cellular membrane (blue bars). Numbers in brackets indicate sequence identity to CCR7 and root
means square deviation of Co. atoms in transmembrane helices. (C) Interatomic contacts (defined as pair of atoms with < 4 A distance) between chemokine
receptors with small molecule ligands (PDB: 5T1A, 30DU, 4MBS, and 5LWE), chemokines (PDB: 4RWS and 4XT1) and a selection of GPCR-effector complexes
(PDB: 3SN6, 6CMO, and 5DGY). Overall a higher overlap between contact sites is observed in the tight intracellular allosteric binding pocket overlapping with the
GPCR-effector binding site. The gray-scale indicates the number of contacts to the respective ligand. The orthosteric binding pocket has a higher level of
sequence variation compared to the allosteric site. It is wide open and highly polar to allow binding of chemokines which are, with approximate sizes of 8 to
12 kDa, much larger compared to a typical class A GPCR ligand. Synthetic small molecule ligands of chemokine receptors, therefore, target a smaller subpocket
as observed for IT1tin CXCR4 (Wu et al., 2010) and BMS-681 in CCR2 (Zheng et al., 2016) or several subpockets like the HIV drug Maraviroc in CCR5 (Tan et al.,
2018). In the CCRY7 structure much of the homologous pocket surface is occupied by a desirable mix of hydrophobic and polar residues as interaction points for
small molecules with an average conservation 58% between human chemokine receptors. Of particular interest for the design of orthosteric CCR7 ligands are
Trp1142° and Tyr136%32 where the corresponding residue is highly conserved and is directly interacting with a ligand in all known structures. Tyr3127-%8, on the
other hand, is a ligand-interacting glutamate in CCR2, CXCR4 and CCRS5 but hydrogen-bonding to Tyr1363'32 in case of CCRY7. Finding and exploring such
variations in the orthosteric binding pocket will help to optimize selective ligands to pharmaceutically target CCR7 once initial hits have been identified.
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Figure S5. Related to Figure 2 and 3

Cmp2105 belongs to a set of four CCR7 binding molecules orginating from a large group of thiadiazole-dioxides developed and patented as potent ligands for
chemokine receptors. They contain a thiadiazole-dioxide core motif with a characteristic sulfonyl group. Modification of the two amine-linked exit vectors of the
central motif allows to fine-tune binding toward CCR?7 (dissociation constants [K4] taken from Taveras et al., 2010).
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