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The extracellular gate shapes the energy profile
of an ABC exporter
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ABC exporters harness the energy of ATP to pump substrates across membranes.
Extracellular gate opening and closure are key steps of the transport cycle, but the underlying
mechanism is poorly understood. Here, we generated a synthetic single domain antibody
(sybody) that recognizes the heterodimeric ABC exporter TM287/288 exclusively in the
presence of ATP, which was essential to solve a 3.2 A crystal structure of the outward-facing
transporter. The sybody binds to an extracellular wing and strongly inhibits ATPase activity
by shifting the transporter’s conformational equilibrium towards the outward-facing state, as
shown by double electron-electron resonance (DEER). Mutations that facilitate extracellular
gate opening result in a comparable equilibrium shift and strongly reduce ATPase activity and
drug transport. Using the sybody as conformational probe, we demonstrate that efficient
extracellular gate closure is required to dissociate the NBD dimer after ATP hydrolysis to
reset the transporter back to its inward-facing state.
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BC exporters are versatile membrane proteins found in all

phyla of life. Type I exporters are the best studied class of

ABC exporters and minimally consist of two transmem-
brane domains (TMDs) each comprising six transmembrane
helices and two nucleotide binding domains (NBDs) that are
universally conserved among all ABC transporters. The NBDs
undergo large conformational changes in response to ATP
binding and hydrolysis, which are transmitted to the TMDs via
coupling helices to assume inward-facing (IF), outward-facing
(OF), and outward-occluded (Occ) conformations!. Alternating
access at the TMDs in conjugation with affinity changes towards
the transported substrates enable uphill transport across the lipid
bilayer2. Fully closed NBDs are stabilized by two ATP molecules
bound at the dimer interface and coincide with TMDs adopting
an OF or Occ state®*, The transition to the IF state requires the
NBDs to separate at least to some degree, a process that is
initiated by ATP hydrolysis®.

Many ABC exporters including the entire human ABCC family
exhibit asymmetric ATP binding sites, namely a degenerate site
that can bind but not hydrolyze ATP and a consensus site that is
hydrolysis-competent®. Heterodimeric TM287/288 of the ther-
mophilic bacterium Thermotoga maritima was the first structu-
rally analyzed example of an ABC exporter with a degenerate
site’8, Two closely related IF structures of TM287/288 were
solved by X-ray crystallography either containing one AMP-PNP
molecule bound to the degenerate site or no nucleotide. In con-
trast to most other IF structures of ABC exporters, the opened
NBDs of TM287/288 are only partially separated due to contacts
mediated by the degenerate site D-loop, whereas the consensus
site D-loop was found to allosterically couple ATP binding at the
degenerate site to ATP hydrolysis at the consensus siteS. The
consensus site features distortions in the Walker B motif, which
prevents nucleotide binding in the IF transporter’. DEER studies
have revealed that TM287/288 exhibits dynamic IF/OF equilibria
in the presence of nucleotides and that nucleotide trapping at the
consensus site is required to strongly populate the OF state,
whereas in the presence of AMP-PNP the transporter pre-
dominantly adopts its IF state®.

Broad distance distributions were found by DEER in the
extracellular gate of TM287/288, hinting at conformational flex-
ibility in this external region®. Similar observations were reported
for ABCB1!0. Unbiased Molecular Dynamics (MD) simulations
of TM287/288 uncovered spontaneous conformational transitions
from the IF state via an Occ intermediate to the OF state!l. Many
simulations remained trapped in the Occ state, suggesting that
extracellular gate opening represents a major energetic barrier in
the conformational cycle. Interestingly, the degree of extracellular
gate opening varies greatly among different type I ABC exporters
solved in OF states, whereas the gate remains closed in the Occ
state>*12, Hence, events occurring at the extracellular gate likely
play a key role in substrate transport and must be allosterically
coupled to the catalytic cycle of the NBDs. Nevertheless, the
underlying molecular mechanism is unknown.

In this work, we generated single domain antibodies that
exclusively bind to OF TM287/288 and thereby inhibit the
transport cycle. The binders were instrumental to solve a crystal
structure of the transporter in its OF state and were used to probe
molecular events at the extracellular gate and their allosteric
coupling with the NBDs.

Results

Conformational trapping of TM287/288. Having solved two
closely related IF structures of TM287/288, our aim was to obtain
an atomic structure of this heterodimeric ABC exporter in its OF
state. DEER analyses revealed that TM287/288 carrying the

TM288E517Q mutation in the Walker B motif of the consensus
site (EtoQ mutation) was almost completely trapped in the OF
state in the presence of ATP-Mg or ATPyS-Mg®. To further
decrease the residual ATPase activity of the EtoQ mutant (turn-
over of 0.02 min~!) by a factor of 6.5, we instead introduced the
EtoA mutation. In addition, we generated single domain anti-
bodies (nanobodies) that exclusively recognize the OF state of
TM287/288. To this end, alpacas were immunized with OF
TM287/288 containing a cross-linked tetrahelix bundle motif!?
(see Methods). This approach vyielded nanobody Nb_TM#1
binding exclusively to TM287/288 in the presence (but not in the
absence) of ATP, as shown by surface plasmon resonance (SPR)
(Fig. 1d). However, crystals obtained with Nb_TM#1 did not
diffract well enough to build a reliable model. Therefore, we
selected synthetic nanobodies (sybodies) against TM287/288
(EtoA) in the presence of ATP-Mg completely in vitro!4.
Thereby, more than ten OF-specific sybodies were generated and
sybody Sb_TM#35 was successfully used to solve the OF structure
of TM287/288(EtoA) in the presence of ATPyS-Mg at 3.2 A
resolution (Fig. 1a, Supplementary Table 1).

Structure of TM287/288-sybody complex. Sybody Sb_TM#35
binds on top of an extracellular wing of TM287/288 (Fig. 1a)
and was crucially involved in establishing crystal contacts
(Supplementary Fig. 1). Binding is mediated by aromatic residues of
all three complementarity determining regions (CDRs) of the
sybody, which are wedged between transmembrane helices (TMs) 1
and 2 of TM287 and TMs 5’ and 6’ of TM288 (Fig. 2a). Since
Sb_TM#35 only binds in the presence of ATP (Fig. 1d), we
hypothesized that it interferes with the catalytic cycle of the
transporter. Indeed, the sybody inhibited the ATPase activity of
TM287/288 in detergent (ICs, of 66.1 nM, Fig. 2b), as well as
reconstituted in nanodiscs (Supplementary Fig. 2b). Of note, inhi-
bition was less efficient in nanodiscs, presumably due to impaired
epitope accessibility of the sybody in the membrane context.

Two nanobodies addressing epitopes on the NBDs. Using the
high resolution structure of OF TM287/288 for molecular
replacement and as template for model building, we solved two
additional low resolution structures (3.5-4.2 A) of the OF trans-
porter determined in complex with alpaca nanobodies Nb_TM#1
and Nb_TM#2 (Fig. 1b, ¢). Nb_TM#1 specifically recognizes the
OF state and binds to the bottom of the closed NBD dimer,
occupying an epitope that is shared between NBD287 and
NBD288 (Fig. 1d). Akin to Sb_TM#35, state-specific Nb_TM#1
was found to inhibit the transporter’s ATPase activity (Fig. 2b).
Nb_TM#2 binds side-ways to NBD288 and exhibits picomolar
affinity for the transporter regardless whether ATP is present or
not (Fig. 1d, Supplementary Table 2). Nevertheless, this nano-
body partially inhibits ATPase activity by around 30% already at
the lowest assayed concentration of 20 nM (Fig. 2b). Because the
TM287/288 concentration needed to be at least 8 nM to reliably
measure ATPase activity, we could not determine the ICs, value
for Nb_TM#2. A measurement artifact can be excluded, because
an unrelated control sybody did not affect the transporter’s
ATPase activity (Fig. 2b).

IF to OF transition renders TM287/288 more symmetric. The
OF structure of TM287/288 features fully dimerized NBDs that
sandwich two ATPyS-Mg molecules at the degenerate and the
consensus site (Fig. 3a, Supplementary Fig. 3). An almost iden-
tical structure (RMSD of 0.21 A) was also obtained in the pre-
sence of ATP-Mg (Supplementary Fig. 4c, Supplementary
Table 1). In contrast to the NBDs of IF TM287/288, which
exhibited pronounced asymmetries between degenerate and
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Fig. 1 Three outward-facing structures of TM287/288 solved in complex with single domain antibody fragments. The transporters are viewed along the
membrane plane (indicated as gray rectangle). a 3.2 A structure of TM287/288(EtoA) in complex with ATPyS-Mg and state-specific sybody Sb_TM#35.
b 3.5 A structure of TM287/288(2xDtoA/EtoA) in complex with ATPyS-Mg and state-specific nanobody Nb_TM#1. ¢ 4.2 A crystal structure of
TM287/288(2xDtoA/EtoA) in complex with ATPyS-Mg and state-unspecific nanobody Nb_TM#2. d SPR analyses in the absence (upper panel) and
presence (lower panel) of ATP using immobilized TM287/288(EtoQ) as ligand and Sb_TM#35, Nb_TM#1 and Nb_TM#2 as analytes. Injected
concentrations of Sb_TM#35: 0, 9, 27, 81, 243, 729 nM; Nb_TM#1: 0, 1, 3,9, 27, 81 nM; Nb_TM#2: 0, 0.9, 2.7, 8.1, 24.3, 72.9 nM. Kinetic analysis is shown

in Supplementary Table 2

consensus site mainly with regard to the D-loops®, the closed
NBD dimer of the OF transporter is more symmetric (Fig. 3a,
Supplementary Fig. 3). Further, the distortions found at the cat-
alytic dyad of the consensus site of the IF structure (E517TM288
and H548TM288) relax during the transition to the OF state and
the two key residues adopt a hydrolysis-competent arrangement
(Fig. 3b). Interestingly, two tunnels that would allow for release of
the cleaved y-phosphate are present at the consensus site
(Fig. 3¢c). The TMDs consisting of two wings each encompassing
six transmembrane helices donated from both protomers are
widely opened towards the outside (Supplementary Fig. 4). With
an RMSD of 1.73 A, the structure of TM287/288 most closely
resembles the structure of Sav1866. Furthermore, the OF struc-
ture is similar to the OF conformation of TM287/288 predicted
by MD simulations (Supplementary Fig. 5)!1, although in the MD
simulations the protein was embedded in a lipid bilayer instead of
the detergent environment used for crystallization. Also the
degree of NBD closure and extracellular gate opening is highly
similar between TM287/288 and Sav1866 (Supplementary

Fig. 6a). The RMSD between TM287 and TM288 decreases from
2.55 A to 1.98 A as the transporter is converted from the IF to the
OF conformation, indicating that OF TM287/288 is more sym-
metric (Supplementary Fig. 6b). Whereas a similar degree of
symmetry was observed between the half-transporters of OF
ABCBI1 (PDB: 6C0V, RMSD of 2.07 A), the equivalent super-
impositions exhibit substantial asymmetries in the OF structure
of MRP1 (PDB: 6BHU, RMSD of 4.54A), mostly owing to
asymmetries in the TMDs (Supplementary Fig. 6b). Extracellular
gate opening is less pronounced in MRP1 and even less so in
ABCBI, and the gate remains almost completely closed in the
outward-occluded structure of McjD* (Supplementary Fig. 6b).
Hence, structures of OF and Occ ABC exporters show their lar-
gest structural variation in the extracellular gates.

The sybody acts as a molecular clamp. Interestingly, we did not
find steric clashes which would prevent Sb_TM#35 from binding
to the IF transporter. Hence, based on structural information
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Fig. 2 The sybody traps TM287,/288 in its OF state. a Sybody Sb_TM#35 is shown as cartoon in gray with the CDR1, 2 and 3 highlighted in yellow, orange
and red, respectively. Four aromatic residues (Y33, W52, Y59, and W113) that wedge between TMs 1 and 2 of TM287 (teal) and TMs 5" and 6’ of TM288
(magenta) are highlighted as sticks. b Inhibition of TM287/288's ATP hydrolysis by Sb_TM#35, Nb_TM#1 and Nb_TM#2. A non-randomized sybody
served as control. The data were fitted with a hyperbolic decay function to determine ICso values, as well as residual activities. The error bars are standard
deviations of technical triplicates. ¢, d DEER analyses of spin-label pairs introduced to probe the extracellular and intracellular TMDs and the NBDs (c), as
well as sybody binding to the transporter (d). DEER traces were recorded in the presence of ATP-EDTA with or without unlabeled Sb_TM#35 (c) or in the
presence of ATP-EDTA and spin-labeled Sb_TM#35 (d). The graphs show experimental distance distributions, and vertical dotted lines shown in

c highlight changes in the mean distances

alone we could not explain why the sybody inhibits ATPase
activity. Therefore, we used DEER spectroscopy to unravel the
sybody’s impact on the conformational cycle.

The sybody was found to shift the transporter’s equilibrium
towards the OF state, as measured in the presence of ATP-EDTA
(arrows in Fig. 2c). Pronounced effects were observed in the
extracellular region (54TM287/290TM288 anq 54TM287/771TM287)
but also when probing distances at the intracellular region of the
TMDs (131TM288/248TM288) and at the NBDs (460TM287/

363TM288) (Fig, 2c and Supplementary Fig. 7). Further, we observed
a distance increase between two spin labels positioned in the wing
underneath the sybody (54TM287/290TM288) ag a result of sybody
binding (dotted vertical lines in Fig. 2c). This suggests that the
sybody acts as a wedge at the opened extracellular wing. As
expected from the lack of sybody binding to the IF state, we
observed negligible effects on the interspin distances when TM287/
288 was incubated with the sybody in the absence of nucleotides
(apo state) (Supplementary Fig. 7).
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Fig. 3 Structural analysis of the closed NBD dimer. a The fully closed NBD dimer (NBD287 in teal and NBD288 in magenta) sandwiches two ATPyS-Mg
molecules (shown as sticks with corresponding electron density) between Walker A motif (red) and the opposite ABC signature motif (green) at the
degenerate and the consensus site in a highly symmetric manner. Residues involved in ATP binding and hydrolysis are shown as sticks. b Superimposition
of the consensus ATP binding site of the previously solved IF structure (PDB: 4Q4A, light pink) and the OF structure (magenta). Distortions of the catalytic
dyad (E517TM288 and H548TM288) are relaxed during NBD closure to adopt a hydrolysis-competent arrangement. The side chain of E517TM288 yas
modeled into the TM287/288(EtoA) structure. ¢ Slice-cut through the two nucleotide binding sites reveals two possible P; exit tunnels at the consensus
site which are not present at the degenerate site. ATPyS (partially clipped) is shown as yellow sticks

To investigate the positioning of the bound sybody relative to
the opposite wing, we then focused on the distance between the
sybody labeled at position 71 and spin labels introduced either at
54TM287 (the sybody-binding wing) or 271287 (opposite wing)
of the transporter (Fig. 2d and Supplementary Fig. 8). The main
distance peak corresponding to dipolar coupling between
715 IM#35 and 54TM287 wag very sharp and centered at 3.8
nm, while it was somewhat broader and centered at 3.2 nm
between 7150-TM#35 and 271TM287 placed on the opposite wing.
Both distances were visible only in the presence of ATP, and were
in close agreement with the simulations based on the OF
structure (Supplementary Fig. 8). Both traces also contained a
distance peak at around 5.2nm corresponding to a residual
fraction of sybody dimers in solution. In conclusion, the sybody
acts as a molecular clamp that keeps the extracellular gate open.

Conserved aspartates seal the extracellular gate. Having shown
that the sybody traps the transporter in a fully opened state, we
reasoned that mutations facilitating extracellular gate opening
would have a similar impact on the transporter’s energy land-
scape. In TF TM287/288, D41TM287 and D5TM288 placed in TM1
of the respective half-transporter establish hydrogen bonds with
backbone amides of the opposite wing (Fig. 4a). Of note, these
aspartates are conserved in bacterial ABC exporters (Fig. 4b), but
not in eukaryotic members of the family. When the aspartates
were substituted with alanines, the ATPase activity of TM287/288
decreased around three-fold for the single mutants and around
10-fold for the double mutant (henceforth called 2xDtoA mutant)
(Fig. 40).

Using again ATP-EDTA to induce the IF to OF transition,
DEER analyses revealed an equilibrium shift towards the OF state
in the 2xDtoA mutant for all spin-labeled pairs (Fig. 4f and
Supplementary Fig. 9). The equilibrium shift was similar to that
induced by Sb_TM#35. Hence, the aspartates at the extracellular
gate constitute an energy barrier that needs to be overcome to
switch to the OF state and influence the ATPase cycle in a long-
ranged allosteric coupling connecting the extracellular gate with
the NBDs.

To probe the atomic details of the conformational dynamics
underlying the IF-OF transition, we performed MD simulations
of TM287/288 in a POPC lipid bilayer starting from the IF crystal
structure (PDB: 4Q4A), after docking a second ATP-Mg molecule
into the consensus site!! and introducing the 2xDtoA mutations
in the extracellular gate. As in our previous MD simulations of
wild-type TM287/28811, we observed spontaneous large-scale
conformational transitions from the IF conformation via an Occ
state to an OF conformation; this complete transition was
observed in 3 out of 20 independent 500ns simulations
(Supplementary Fig. 10). Despite the limited statistics, the
transition appears to be slightly more frequent than for the
wild-type (6 out of 100 simulations!!), in agreement with our
experimental results and the notion that the polar contacts of the
two aspartate residues increase the energy barrier of extracellular
gate opening. Although MD simulations and experimental data
are in agreement, we cannot exclude different results if these
rather long simulations were conducted in a lipid bilayer
containing other lipids such as for example POPE!°. To assess
the stability of the OF structure reported in this work, 20
independent 400 ns simulations were carried out for both the
wild-type and the 2xDtoA mutant. Although the sybody is not
present in the simulations, the OF conformation with two bound
ATP-Mg molecules is very stable and merely fluctuates around
the X-ray structure (Supplementary Fig. 11). Additional control
simulations in a POPE (instead of POPC) bilayer confirmed this
result (Supplementary Fig. 11), rendering it unlikely that lipid
composition (in terms of PC vs. PE head groups) has a large effect
on the ATP-Mg-bound OF structure.

Next, we introduced the 2xDtoA mutations into the hetero-
dimeric ABC exporter EfrEF of Enterococcus faecalis (Fig. 4b)1.
Ethidium-stimulated ATPase activity profiles of membrane
reconstituted EfrEF were found to be strongly affected by the
single DtoA mutations, and the ATPase activity of EfrEF
containing the 2xDtoA mutations could no longer be
stimulated by the drug (Fig. 4d). Supporting this notion, the
TM287/288(2xDtoA) mutant reconstituted in nanodiscs exhib-
ited strongly diminished drug stimulation by Hoechst 33342
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Fig. 4 The extracellular gate is sealed by two conserved aspartates. a Structure of TM287,/288's extracellular gate in the IF (left, PDB: 4Q4H) and OF
(right) state shown as cartoon. D41TM287and D65TM288 3re shown as sticks and establish hydrogen bonds (dashed yellow lines) with the peptide
backbone (shown as sticks) of neighboring helices TM6 and TM6' that are broken during IF-OF transition. b Sequence alignment of bacterial ABC
exporters in the region containing the conserved extracellular gate aspartates. ¢ ATPase activities of single mutants D41ATM287 and D65ATM288 and the
corresponding double mutant (2xDtoA) relative to wild-type TM287,/288 determined in detergent. d Drug stimulated ATPase activities of wild-type EfrEF,
the single mutants D41AEE and D50AERF and the corresponding double mutant (2xDtoA) reconstituted into proteoliposomes determined in the absence
(basal activity) or in the presence of ethidium at the concentrations indicated. Data were normalized to the basal ATPase activity of the respective mutant.
The error bars are standard deviations of technical triplicates. e Ethidium accumulation of Lactococcus lactis cells expressing wild-type EfrEF, the inactive
Walker B mutant E515QEfF or the extracellular gate mutants D41AEE and D50AEF or the corresponding double mutant (2xDtoA). f DEER analyses
probing the extracellular and intracellular TMDs and the NBDs (same positions as in Fig. 2c). DEER traces were recorded in the presence of ATP-EDTA for
the wild-type transporter and for TM287,/288(2xDtoA). g Relative ATPase activities of the 2xDtoA mutant in the presence of increasing concentrations of
Sb_TM#35, Nb_TM#1 and Nb_TM#2. A non-randomized sybody served as control. The data were fitted with a hyperbolic decay function to determine

ICs0 values as well as residual activities. The error bars are standard deviations of technical triplicates

(Supplementary Fig. 2a). Next, we expressed EfrEF wild-type and
DtoA mutants in Lactococcus lactis and monitored ethidium
uptake by fluorescence measurements (Fig. 4e). Wild-type EfrEF
efficiently expels ethidium from the cell, resulting in a slow
increase of ethidium accumulation that reaches a low steady-state
level. EfrEF containing the EtoQ mutation in the NBDs served as
negative control exhibiting high ethidium accumulation levels!”.
The single DtoA mutants D41AEE and D50AERF partially lost
their capability of ethidium efflux. Interestingly, the accumulation
curve of the 2xDtoA mutant does not reach a steady-state level
within the time frame of the experiment. This observation
suggests a transporter defect resulting in passive influx of
ethidium into the cell mediated by EfrEF carrying the 2xDtoA
mutations. In conclusion, the extracellular aspartates are
important gate-keeper residues that are allosterically coupled to
the NBDs and are required for substrate transport.

Extracellular gate mutant and sybody are synergistic. Because
both sybody binding and weakening of the extracellular gate
shifted the conformational equilibrium towards the OF state, we
reasoned that these effects are additive. Indeed, with an ICs, of
18.4 nM (Fig. 4g), inhibition of TM287/288 carrying the 2xDtoA
mutations by Sb_TM#35 was found to be more pronounced than
the inhibition of the wild-type transporter (ICsp=66.1 nM)
(Fig. 2b). In further agreement, the affinity of Sb_TM#35 towards
the 2xDtoA mutant (Kp = 14 nM) was around eight times higher
than towards the wild-type transporter (Kp =110 nM) (Supple-
mentary Fig. 12, Supplementary Table 2). Affinity was as well
increased upon introduction of the EtoA or EtoQ mutation into
the consensus site of the transporter (Kp = 66 nM) which as well
exhibit a conformational equilibrium shift towards the OF state’
and was highest for the combined triple mutant (2xDtoA/EtoA)
(Kp =8 nM). An analogous pattern was observed for Nb_TM#1,

6 NATURE COMMUNICATIONS | (2019)10:2260 | https://doi.org/10.1038/s41467-019-09892-6 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

a -
EtoA + ATP-Mg Sb_TM#35
S 250 Binder injection Binder injection Binder injection Binder injection Nb TM#1
T,
[0}
8 150 1 mMATP ¢
] ‘ \
% J
C 0 T T T T ey
0 22 215 407 1292 Time [min]
b TM287/288 2xDtoA EtoQ EtoA 2xDtoA/EtoA
300 300 300 300 300
tip = 45 min/ 49 min tp = 287 min /268 min typ = 402 min /417 min
> 5 200 = 200 = 200 = 200 = 200
= & g g g g
o, 2 =} =] =] >
£ 1= 100 100 T 100 T 100 T 100
+
0 0 133 0+ 0 0
0 5 10 15 20 25 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Time [h] Time [h] Time [h] Time [h] Time [h]
< 200 200 = 297 min /281 min 200 k= 112 min /95 min 200 2001 tp= >954 min / >954 min
=
) ]
w & £ g i s . .
o = 100 = 100 = 100
= 'z T T
<
+ olss s o s . | 0 I 0
0 4 8 12 16 0 4 8 12 16 0 8 12 16 0 4 8 12 16 0 4 8 12 16
Time [h] Time [h] Time [h] Time [h] Time [h]

Fig. 5 Probing the OF-IF transition using state-specific binders. a Exemplary raw data of SPR traces based on which conformational probing was detected.
At time point zero, immobilized TM287/288(EtoA) was charged with TmM ATP (red arrow) and binders were injected (gray arrows) at saturating
concentrations (Sb_TM#35, 1uM; Nb_TM#1, 500 nM; Nb_TM#2, 100 nM) to obtain maximal response unit values (RUax) at the indicated time points.
b RU .y values for wild-type and mutant TM287/288 were obtained as shown in a by charging the transporter with 1mM ATP either in presence of Mg2+
(upper panel) or EDTA (lower panel). For state-specific binders Sb_TM#35 and Nb_TM#1, data were fitted using a one phase decay function to determine
half-life values (t;,,) of the OF state. State-unspecific Nb_TM#2 was used as a control

which binds to the closed NBD dimer. The ICs, was substantially
smaller when probing the 2xDtoA mutant (Kp=16.8 nM)
compared to wild-type TM287/288 (Kp=460nM) (Fig. 2b,
Fig. 4g). This difference was again reflected by an affinity increase
for the 2xDtoA mutant (37 nM) vs. the wild-type transporter
(Kp = 184 nM) and the highest affinity was observed for the triple
mutant (Kp=5nM) (Supplementary Fig. 12, Supplementary
Table 2). In conclusion, Sb_TM#35 and Nb_TM#1 bind to the
opposite ends of the transporter but nevertheless exhibit a highly
similar biophysical behavior of trapping the OF transporter.

Probing the OF-IF conversion by state-specific binders. We
finally tested whether the state-specific nanobodies could be
used as probes in SPR to investigate the OF-IF transition of
TM287/288. When immobilized TM287/288(EtoA) was charged
with ATP-Mg and subsequently washed with buffer devoid of
nucleotides, the maximal SPR binding signal for the OF state-
specific binders Sb_TM#35 and Nb_TM#1 slowly decreased
over a time window of several hours (Fig. 5a). Immobilized
TM287/288 was stable within this time frame, because the max-
imal binding signal for the state-unspecific nanobody Nb_TM#2
only slightly decreased (Fig. 5a). Subsequently, we interrogated
the OF-IF conversion using either ATP-Mg (hydrolyzing con-
ditions) or ATP-EDTA (ATP binding without hydrolysis).

In the case of wild-type TM287/288 loaded with ATP-Mg or
ATP-EDTA, the state-specific binders were unable to recognize
the transporter within the time resolution of the experiment,
showing rapid conversion to the IF state. In contrast, the OF state
was long-lived when ATP-Mg was occluded by the EtoQ or the
EtoA mutant. The lifetime of the OF state as probed by the state-
specific binders Sb_TM#35 or Nb_TM#1 was highly similar (;,,
of 45 or 49 min for the EtoQ mutant and 287 or 268 min for the
EtoA mutant, respectively). Strikingly, these values are in close
agreement with the half-life of ATP hydrolyzed by these mutants,

namely 32 min (EtoQ mutant) and 205 min (EtoA mutant) at
25 °C. For the same mutants, the situation was inversed for ATP-
EDTA. The EtoA mutant readily converted to the IF state akin to
the wild-type transporter, whereas the OF state was very stable for
the EtoQ mutant (f;,, = 112 or 95 min, respectively). In this case,
ATP cannot be hydrolyzed and we investigate NBD dissociation
with bound ATP (but lacking the coordination by Mg?*). The
glutamine in the Walker B motif appears to stabilize ATP binding
in the NBD sandwich dimer, whereas the canonical glutamate or
an alanine at the same position promotes fast NBD dissociation.
When the 2xDtoA mutations were introduced, the OF state was
very long-lived in case of ATP-EDTA (t;,, =297 or 281 min,
respectively). This suggests that weakening of the extracellular
gate by the 2xDtoA mutations strongly impedes NBD dissocia-
tion, whereas NBD dissociation of the wild-type transporter is
very fast under these experimental conditions. NBD opening is
further slowed down if the 2xDtoA mutations are combined with
the EtoA mutation for both ATP-Mg and ATP-EDTA.

From this dataset one can draw two major conclusions. First,
ATP hydrolysis weakens the NBD dimer and is required to reset
the transporter to the IF state under physiological conditions
where ATP and Mg?* are always present. And second, strong
contacts at the extracellular gate are mandatory to exert a
mechanical force onto the NBDs to facilitate fast NBD opening in
order to reset the transport back to its IF state.

Discussion

In this work we unleashed the power of state-specific single
domain antibodies obtained from alpacas and entirely in vitro
from synthetic libraries to investigate a membrane transporter
at the structural and functional level. The strategy of generating
state-specific binders against type I ABC exporters has a long
history going back to the 90’s of the last century, when the
state-specific ABCBI antibody UIC2 was identified!8. A recent
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Fig. 6 Role of the extracellular gate in the transport cycle of TM287,/288.
Substrate (yellow star) binds to the IF transporter (1) with high affinity,
while the extracellular gate is sealed by two aspartates (closed D-lock).
Binding and occlusion of two ATP-Mg molecules at the NBD interface
drives the transition to the OF state (2). The extracellular gate opens (open
D-lock) and substrate is released. The extracellular gate of the empty
outward-oriented cavity closes (3) and thereby may trigger ATP hydrolysis
at the consensus site. The mechanical force of the firmly sealed
extracellular gate (closed D-lock) is required to dissociate the NBDs after
ATP hydrolysis in order to reset the transporter to its IF state

cryo-EM structure of ABCBI in complex with UIC2 revealed
that the antibody clamps the extracellular loops together,
thereby preventing extracellular gate opening!®. Molecular
clamping of the closed extracellular gate was also achieved by
a cyclic peptide raised against CmABCB120. Further
examples of binders that prevent the IF-OF conversion are
nanobodies raised against ABCB1 and PgIK, which both steri-
cally clash with NBD closure?1:22. In contrast, our binders are
specific for the OF state and consequently impede the OF-IF
conversion.

Sybody binding to an extracellular wing of TM287/288 was
essential to solve the OF structure. Both the degenerate and the
consensus ATP binding site are fully closed and highly sym-
metric, but only the consensus site bears the catalytic dyad
positioned to catalyze ATP hydrolysis?3. This suggests that ATP
hydrolysis of only one nucleotide is sufficient to initiate dis-
sociation of the NBDs. In further support of this view, the closed
NBD dimers features two possible P; exit tunnels at the
consensus site.

A comparison with other OF and Occ transporter struc-
tures revealed major conformational heterogeneity in the degree
of extracellular gate opening, which has been discussed to play a
potential role in squeezing out substrates or to prevent rebinding
of substrates»®10:1224 T this study, we uncover cross-talk
between the extracellular gate and the ATPase cycle, a connection
that has to the best of our knowledge not yet been investigated at
the molecular level (Fig. 6). A sybody stabilizing the opened
extracellular wing or mutations weakening the extracellular gate
both shifted the conformational equilibrium towards the OF state.
Previous experimental and computational studies have uncovered
that NBD closure precedes extracellular gate opening during the
IF-OF transition!!2>, and DEER analyses have revealed that
extracellular gate opening can be partial while NBD closure is
complete”1026, Hence, there seems to be an inbuilt mechanical
principle that the extracellular gate is energetically costly to open.

Conversely, using our state-specific nanobodies as conformational
probes we were able to show that extracellular gate closure is
coupled to the dissociation of the closed NBD dimer after ATP
hydrolysis. Our experiments on EfrEF demonstrated that a firmly
sealed extracellular gate is in fact crucial for transporter function.
Further, the 2xDtoA mutant had a strongly reduced ATPase
activity and lost its capacity to be stimulated by drugs. This
suggests that extracellular gate closure has become the rate-
limiting step of the catalytic cycle of the 2xDtoA mutant. Hence,
in this mutant the IF-OF conversion is no longer rate-limiting
and consequently cannot be stimulated by drug binding to the
inward-oriented high-affinity site (Fig. 6).

The ATP-bound OF state with completely closed NBDs has
been referred to as the high-energy state of the transport cycle
and in some instances it was proposed that ATP hydrolysis is
needed to populate the OF state at all'®2%, In contrast, we and
others have previously stipulated that ATP binding alone is suf-
ficient for IF-OF conversion and substrate release®!!?7, in
agreement with the ATP-switch model?8. It should be noted that
while the opened extracellular gate indeed represents a high-
energy state, the opposite is in fact true for the closed NBD dimer.
It adopts a low-energy state and a large energy input is required
to dissociate the dimer?°. This is certainly achieved in part by the
hydrolysis of ATP3031, Importantly, our results suggest that NBD
dissociation also involves a mechanical component mediated by
extracellular gate closure. A further possibility is the triggering of
ATP hydrolysis as a result of extracellular gate closure. Although
speculative and neither directly supported nor excluded by our
data, such a mechanism would assure that the transporter only
reverts to the IF state after substrate release.

Why and when ATP hydrolysis is required to achieve active
transport is a recurrent debate in the ABC transporter field. Our
data presented here and in previous studies®!! clearly suggest
that ATP binding alone (in case of ATP-EDTA when ATP
hydrolysis cannot occur) is sufficient for the IF-OF conversion
and presumably the active transport of one substrate molecule.
Directionality of transport is then achieved by an affinity switch
of the substrate binding site, which inevitably undergoes drastic
rearrangements as the TMDs switch from an IF to an OF con-
formation!2. Nevertheless, it is unlikely that an ABC exporter can
operate efficiently by binding and dissociation of ATP alone,
because energy input is lacking and the molecular events would
be driven by slow stochastic Brownian motions alone. To strongly
populate the OF state under physiological conditions, ATP-Mg
needs to be occluded at the consensus site of the closed NBD
dimer32, a state that can be efficiently mimicked by the Walker B
EtoQ or EtoA mutation33. As we show here with our binder
probes, ATP occlusion firmly traps the transporter in the OF state
and prevents transporter cycling. Hence, ATP hydrolysis appears
to be strictly required to initiate dissociation of the closed NBD
dimer. Once ATP is hydrolyzed, the force exerted by the closed
extracellular gate facilitates NBD dissociation. In summary, our
results support the notion that ATP hydrolysis is required to
drive the transport cycle at the resetting step from the OF to the
IF state.

We hope that our results provide a mechanistic framework to
further study the functional role of the extracellular gate of type I
ABC exporters and to investigate the molecular underpinning
of disease-causing mutations found in the extracellular region
of medically important ABC exporters such as MRP1 and
CFTR3435,

Methods

Expression and purification. The genes encoding the heterodimeric ABC trans-
porter TM287/288 were amplified and cloned into pINIT_cat (addgene: Plasmid
#46858)”. The genes were subcloned into pBAD expression vectors by FX cloning;3¢
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for crystallization and biochemical analyses into the pPBXNH3L expression vector
or into the pBXNH3LCA expression vector for the production of biotinylated
TM287/288 variants!4.

Freshly transformed MC1061 E. coli cells were grown in Terrific Broth (TB)
medium, supplemented with 100 pg/ml ampicillin, to an ODgg of 1.0-1.5 at 37 °C
and expression was induced by the addition of 0.0017 % (w/v) L-arabinose for 5 h at
30 °C. Cells were harvested and cellular membranes prepared in 20 mM Tris-HCl
pH 7.5, 200 mM NaCl and 10 % (v/v) glycerol. Membranes were solubilized by the
addition of 1 % (w/v) n-dodecyl-p-D-maltoside (B-DDM, Glycon) for 2h at 4°C.
Solubilized membranes were supplemented with 20 mM imidazole and loaded on a
Ni-NTA Superflow (Qiagen) gravity flow column at 4 °C, washed with 20 column
volumes 50 mM imidazole pH 7.5, 200 mM NaCl, 10 % (v/v) glycerol and 0.03 %
(w/v) B-DDM or 0.3 % (w/v) n-decyl-p-D-maltoside (B-DM, Glycon) and eluted
with 4 column volumes 200 mM imidazole pH 7.5, 200 mM NaCl, 10 % (v/v)
glycerol and 0.03 % (w/v) B-DDM or 0.3 % (w/v) B-DM, followed by desalting
using a PD-10 column (GE Healthcare, 17-0851-1) equilibrated with 20mM Tris-
HCI pH7.5, 150mM NaCl and 0.03 % (w/v) f-DDM or 0.3 % (w/v) p-DM. The
His, (-tag was cleaved off overnight at 4 °C using 3 C protease (1:10 w/w), followed
by reloading on a Ni-NTA gravity flow column equilibrated with 20 mM Tris-HCI
pH 7.5, 150 mM NaCl, 40 mM imidazole and 0.03 % (w/v) B-DDM or 0.3 % (w/v)
B-DM at 4 °C. Processed TM287/288 was polished by size-exclusion
chromatography using a Superdex 200 Increase 10/300 GL (GE Healthcare)
column equilibrated in 20 mM Tris-HCI pH 7.5, 150 mM NaCl and 0.03 % (w/v) -
DDM or 0.3 % (w/v) p-DM at 4 °C and concentrated to the desired concentration
with an Amicon Ultra-4 concentrator unit with a molecular weight cut-off
(MWCO) of 50 kDa. Purified TM287/288 variants were used immediately or flash-
frozen in liquid nitrogen and stored at —80°C.

Avi-tagged TM287/288 variants were enzymatically biotinylated using BirA
during 3 C cleavage in 20 mM imidazole pH 7.5, 200 mM NaCl, 10 % (v/v) glycerol,
10 mM magnesium acetate and 0.03 % (w/v) p -DDM, and two-fold molar excess
of biotin.

EfrEF was amplified from the genomic DNA of Enterococcus faecalis V583,
cloned into the shuttle vector pREXNH3 via FX cloning®® and subcloned into the
expression vector pNZ8048NH3 via vector backbone exchange cloning (VBEx)37.
Transformed L. lactis NZ9000 AlmrAAImrCD cells3® were grown in M17 medium
supplemented with 0.5% glucose and 5 pg/ml chloramphenicol to an ODgg of 1 at
30 °C and the expression was induced by adding a nisin-containing culture
supernatant of L. lactis NZ9700 for 4 h (1:5000 [v/v]). Cells were harvested and
membranes were prepared in 20 mM Tris-HCI pH 7.5, 200 mM NaCl and 10 %
(v/v) glycerol!S. EftEF was purified using -DDM in the same way as TM287/288
(see above).

Nanobodies/sybodies were either expressed from pSb_init (addgene:

#110100) for biochemical experiments or subcloned into pBXNPHM3 (addgene:
#110099) by FX cloning for the production of tag-free nanobodies/sybodies for
crystallization and DEER experiments'43°. Purified nanobodies and sybodies were
stored at —80 °C.

Mutagenesis. To weaken the extracellular gate, two conserved aspartates were
replaced by alanines in various TM287/288 variants resulting in TM287/288
(2xDtoA). D41ATM287 was introduced using the primers TM287_D41A_FW
(GGC ACG TAT TGT CGC CGA AGG AAT CG C) and TM287_D41A_RV
(GCG ATT CCT TCG GCG ACA ATA CGT GCC). D65ATM288 yyas introduced
using the primers TM288_D65A_FW (CAT AGG AAA AAC GAT CGC TGT
TGT CTT CG) and TM288_D65A_RV (CGA AGA CAA CAG CGA TCG TTT
TTC CTA TG). In order to render TM287/288 catalytically inactive, E517ATM283
was introduced in wild-type TM287/288 and TM287/288(2xDtoA) using the pri-
mers TM288_E517A_FW (CCT GAT ACT GGA CGC AGC CAC CAG CAA C)
and TM288_E517A_RV (GTT GCT GGT GGC TGC GTC CAG TAT CAG G).
Mutation D41AEfE was introduced using the primers EfrE_D41A_FW (CAA GTT
GAT TGC TGT GGG CAT CG) and EfrE_D41A_RV (CGA TGC CCA CAG CAA
TCA ACT TG). D50AEfTF was generated using the primers EfrF_D50A_FW (CAA
TCG GGA TTG CTA ACC TCT TAG AAG C) and EfrF_D50A_RV (GCT TCT
AAG AGG TTA GCA ATC CCG ATT G). In order to cross-link the transporter at
the tetrahelix bundle in the OF state, L200CT™™287 was introduced in cys-less
TM287/288 (described in ref. 7) using the primers TM287_L200C_FW (GAG AAA
ATC TCT GCG GTG TCA GGG TAG TGA G) and TM287_L200C_RV (CTC
ACT ACC CTG ACA CCG CAG AGA TTT TCT C) and combined with the
$224CTM288 muytation using the primers TM288_S224C_FW (CAT AGA AGA
AGA CAT CTG CGG CCT CAC TGT G) and TM288_5224C_RV (CAC AGT
GAG GCC GCA GAT GTC TTC TTC TAT G).

For spin labeling of the sybody, S71C was introduced in Sb_TM#35 using the
primers Sb_TM#35_S71C_FW (CAC GGT GTG CCT GGA CAA CG) and
Sb_TM#35_S71C_RV (CGT TGT CCA GGC ACA CCG TQG).

For spin labeling of TM287/288, three new cysteines were introduced in cys-less
TM287/288 (called wild-type TM287/288 for simplicity). $271CTM287 yas
generated using the primers TM287_S271C_FW (CAG ATG GAG ATA GGA
TGC ATC ATG GCA TAC) and TM287_S271C_RV (GTA TGC CAT GAT GCA
TCC TAT CTC CAT CTG) as a single mutant or in combination with K54CTM287,
which was generated using the primers TM287_K54C_FW (CTT TTC TCT GGT
TTT GTG TAC AGG GAT CCT CAT G) and TM287_K54C_RV (CAT GAG GAT

CCC TGT ACA CAA AAC CAG AGA AAA G). K54CT™287 was also prepared as
a single mutant or in combination with 1290CT™288 introduced with the primers
TM288_I1290C_FW (CGC CTT GAA AGA CTG TAT CAC GGT GGG) and
TM288_1290C_RV (CCC ACC GTG ATA CAG TCT TTC AAG GCG).

Purified mutant proteins were all analyzed by SEC and did not differ in terms of
elution profile and yield from the wild-type transporter.

Crystallization. For crystallization of TM287/288(EtoA) or TM287/288(2xDtoA/
EtoA) in complex with Sb_TM#35, freshly purified transporter in 0.3% (w/v) B-
DM was concentrated to about 12 mg/ml using an Amicon Ultra-4 concentrator
unit (50 kDa MWCO) and purified Sb_TM#35 (stored at —80 °C) was added in a
1.1-fold molar excess (final complex concentration of 10 mg/ml). Complexes were
pre-incubated with 2.5 mM adenosine 5’-(3-thiotriphosphate) (ATPYS, Sigma,
A1388) or 5mM ATP, 3 mM MgCl, for 5-6 days at 20 °C (without this incubation
step, the crystals did not diffract to high resolution), before crystals were grown by
the vapor diffusion method in sitting drops (1:1 protein to reservoir ratio) at 20 °C.
Crystals were picked from wells containing either 0.1 M Na-acetate pH 4.6, 0.035 M
NaCl and 11.5% (w/v) PEG6000 (ATPyS-bound structure), or 0.1 M Na-acetate pH
4.6, 0.025 M NaCl and 12% (w/v) PEG6000 (ATP-bound structure). Crystals
appeared within 1-3 days and were fished immediately. Crystals were cryo-
protected in 0.1 M Na-acetate pH 4.6, 0.04 M NaCl and 15% (w/v) PEG6000
additionally containing 20 mM Tris-HCI pH 7.5, 150 mM NaCl, 0.3% (w/v) f-DM,
3 mM MgCl,, 1.25 mM ATPyS, or 5mM ATP and 25% (v/v) ethylenglycol and
flash-frozen in liquid nitrogen.

For crystallization of TM287/288(2xDtoA/EtoA) in complex with Nb_TM#1,
purified Nb_TM#1 (stored at —80 °C) was added to the transporter purified in
0.3% (w/v) B-DM in a 1.2-fold molar excess prior to size-exclusion
chromatography. After short incubation on ice, the complex was separated from
excess nanobodies by size-exclusion chromatography using a Superdex 200
Increase 10/300 GL (GE Healthcare) column equilibrated in 20 mM Tris-HCl pH
7.5, 150 mM NaCl, and 0.3% (w/v) p-DM. The transporter/nanobody complexes
were concentrated to 10 mg/ml using an Amicon Ultra-4 concentrator unit (50 kDa
MWCO) and incubated with 5mM ATPyS and 3 mM MgCl, for 15 min on ice.
Crystals were grown by the vapor diffusion method in sitting drops (1:1 protein to
reservoir ratio) at 20 °C in 0.05 M Glycine pH 9.5, 0.225 M NaCl and 21% (v/v)
PEG550MME. Crystals appeared within 2-3 days and were grown for another
3 weeks. Crystals were cryo-protected in reservoir solution containing 10% (v/v)
PEG400 and flash-frozen in liquid nitrogen.

For crystallization of TM287/288(2xDtoA/EtoA) in complex with Nb_TM#2,
purified Nb_TM#2 (stored at —80 °C) was added to the transporter purified in
0.03% (w/v) B-DDM in a 1.2-fold molar excess prior to size-exclusion
chromatography. After short incubation on ice, the complex was separated from
excess nanobodies by size-exclusion chromatography using a Superdex 200
Increase 10/300 GL (GE Healthcare) column equilibrated in 20 mM Tris-HCl pH
7.5, 150 mM NaCl, and 0.03% (w/v) p-DDM. The transporter/nanobody complexes
were concentrated to 10 mg/ml using an Amicon Ultra-4 concentrator unit (50 kDa
MWCO) and incubated with 2.5 mM ATPyS and 3 mM MgCl, for 15 min on ice.
Crystals were grown by the vapor diffusion method in sitting drops (1:1 protein to
reservoir ratio) at 20 °C in 0.1 M Tris-HCI pH 8.5, 0.1 M NaCl and 30% (v/v)
PEG400. Crystals appeared within 2-3 days and were grown for another 2-3 weeks.
Crystals were flash-frozen in liquid nitrogen without further cryo-protection.

Data collection and structure determination. Diffraction data were collected
with a wavelength of 1.0 A at 100K at the beamlines X06DA and X06SA at the
Swiss Light Source (SLS, Villigen, Switzerland). Diffraction data were processed
with the program XDS?® and truncated using the Diffraction Anisotropy Server
with default settings?® due to strong or severe anisotropy, what lead to improved
electron density maps (Supplementary Table 1, Supplementary Fig. 13).

The TM287/288(EtoA) — Sb_TM#35 — ATPyS-Mg complex structure was
solved by molecular replacement in Phaser#! using a modified homology model
based on Sav1866 (PDB: 2HYD). The crystals belong to the space group P2,
containing two TM287/288 heterodimers and two sybodies per asymmetric unit.
After a few cycles of model building in Coot*? and refinement in Buster (www.
globalphasing.com), a poly-alanine model of a nanobody (PDB: 1ZVH) was
manually placed into additional electron density. Multiple iterations of model
building in Coot and TLS refinement in Buster resulted in a final model with good
geometry (Ramachandran favored/outliers: 96.54%/0.08%) (Supplementary
Table 1). Chains A (TM287), B (TM288) and E (Sb_TM#35) were used for
structural analysis and figures.

In order to determine the TM287/288(2xDtoA/EtoA) - Sb_TM#35 — ATP-Mg
complex structure, the final TM287/288(EtoA) — Sb_TM#35 — ATPyS-Mg complex
structure was used for refinement against the TM287/288(2xDtoA/EtoA) -
Sb_TM#35 — ATP-Mg data. The 2xDtoA mutations were introduced and the
ATPYS replaced by ATP in Coot. TLS refinement in Buster resulted in a final
model with good geometry (Ramachandran favored/outliers: 96.58%/0.24%)
(Supplementary Table 1). Chains A (TM287) and B (TM288) were used for
structural comparison with the TM287/288(EtoA) - Sb_TM#35 - ATPyS-Mg
complex structure.

The TM287/288(2xDtoA/EtoA) — Nb_TM#1 - ATPyS-Mg complex structure
was solved by molecular replacement in Phaser using the TM287/288(EtoA) -
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Sb_TM#35 structure without the sybody. The crystals belong to the space group
P2, containing two TM287/288 heterodimers and two nanobodies per asymmetric
unit. After some cycles of model building in Coot and refinement in Buster, Phaser
was used to place the missing nanobody using a homology model based on PDB
entry 50CL. Multiple iterations of model building in Coot and TLS refinement in
Buster resulted in a final model with good geometry (Ramachandran favored/
outliers: 94.68%/0.24%) (Supplementary Table 1). Chain A (TM287), B (TM288)
and E (Nb_TM#1) were used for figures.

The TM287/288(2xDtoA/EtoA) - Nb_TM#2 - ATPyS-Mg complex structure
was solved by molecular replacement in Phaser using the TM287/288(EtoA) —
Sb_TM#35 structure without the sybody. The crystals belong to the space group P1
containing two TM287/288 heterodimers and two nanobodies per asymmetric unit.
After several cycles of model building in Coot and refinement in Buster, Phaser was
used to place the missing nanobody using a poly-alanine homology model based on
PDB entry 4LAJ. Multiple iterations of model building in Coot and TLS refinement
in Buster resulted in a final model at 4.2 A resolution (Ramachandran favored/
outliers: 93.34%/0.83%) (Supplementary Table 1). Chain A (TM287), B (TM288)
and E (Nb_TM#2) were used for figures. Molecular graphics and analyses were
performed in Pymol or with UCSF Chimera*3.

ATPase assays. ATPase activities were measured by detecting liberated phosphate
using molybdate/malachite green method. To detect phosphate, reaction solution
(90 pl) was mixed with filtrated malachite green detection solution (160 pl) con-
sisting of 10.5 mg/mL ammonium molybdate, 0.5 M H,SO,, 0.34 mg/ml malachite
green, and 0.1% Triton X-100, and absorption was measured at 650 nm®. ATPase
activity measurements with detergent-purified protein were carried out in ATPase
buffer consisting of 20 mM Tris-HCl pH 7.5, 150 mM NaCl, 10 mM MgSO,
containing 0.03% (w/v) B-DDM. Activity measurements of TM287/288 recon-
stituted in nanodiscs were performed in the same buffer lacking detergent. Mea-
surements of EfrEF reconstituted in proteoliposomes were carried out in 50 mM
HEPES pH 7.0 and 10 mM MgSO,.

Relative ATPase activities of TM287/288(D41AT™287), TM287/288
(D65ATM288) and TM287/288(2xDtoA) compared to wild-type TM287/288 were
measured at 25 °C for 15 min in the presence of 500 uM ATP. 32 nM wild-type
TM287/288, 64 nM single DtoA TM287/288 variants and 128 nM TM287/288
(2xDtoA) were used and the respective concentration of TM287/288(EtoQ) for
background subtraction.

The relative ATPase activity stimulations of EfrEF variants in proteoliposomes
by ethidium were determined at 30 °C for 15 min in the presence of 1 mM ATP.
The amount of reconstituted EfrEF variants was determined by quantitative SDS-
PAGE. 4 nM wild-type EfrEF, 23 nM single DtoA EfrEF variants, and 15 nM EfrEF
(2xDtoA) were used and buffer controls were taken for background subtraction.

Inhibition of ATPase activities of wild-type TM287/288 and TM287/288
(2xDtoA) in detergent by binders was determined in the presence of 500 uM ATP
at 25 °C for 30 min or 60 min, respectively. 8 nM wild-type TM287/288, as well as
TM287/288(2xDtoA) were used, which is more than 2-fold less than the lowest
binder concentration (20 nM). For background subtraction equal amounts of
TM287/288(EtoQ) were used. To obtain ICs, values, the inhibition data were fitted
with a hyperbolic decay curve with the following function (SigmaPlot):

f=yp+(a-1Cs)/(IC50 + x) (1)

in which f corresponds to the ATPase activity at the respective binder
concentration divided by the ATPase activity in the absence of inhibitor
normalized to 100%, y, corresponds to the residual activity at infinite binder
concentration, a corresponds to the maximal degree of inhibition (a + y, = 100%)
and x corresponds to the binder concentration.

Stimulated ATPase activities of wild-type TM287/288 and TM287/288(2xDtoA)
in nanodiscs were determined at 37 °C for 30 min in the presence of 500 uM ATP
and varying Hoechst 33342 concentrations. 40 nM wild-type TM287/288, as well as
TM287/288(2xDtoA) were used to determine relative stimulations compared to
basal ATPase activities using buffer for background subtraction.

Hoechst 33342 stimulated ATPase activity inhibition in nanodiscs was
determined at 37 °C for 30 min in the presence of 500 pM ATP and 50 uM Hoechst
33342. 8 nM wild-type TM287/288 and 40 nM TM287/288(2xDtoA) in nanodiscs
were used to determine ATPase activities in the presence or absence of 10 uM
binders using empty nanodiscs for background subtraction.

BMOE cross-linking. To raise alpaca nanobodies specifically recognizing the OF
state of TM287/288, the transporter was cross-linked at the tetrahelix bundle,
which forms when the transporter adopts the OF state!3. Two cysteines were
introduced in the cys-less TM287/288 variant at positions L200CT™287 and
$224CTM288 by site-directed mutagenesis. On top, the 2xDtoA mutations were
introduced in TM287/288_cl_L200CTM287/5224CTM288_ Since the two cysteines
are too far apart to form a disulfide bond, the maleimide cross-linker BMOE
(bismaleimidoethane, Thermo Scientific™, #22323) with a length of 8 A was used.
TM287/288_cl_L200CT™287/$224CT™?288 with or without the 2xDtoA mutations
was expressed as described above. Membranes were solubilized and purified by Ni-
NTA affinity chromatography in presence of 1 mM dithiothreitol (DTT) in 0.03%
(w/v) B-DDM. Buffer was exchanged and DTT removed by size-exclusion chro-
matography using a Superdex 200 Increase 10/300 GL (GE Healthcare) column

equilibrated in PBS pH 7.4 and 0.03% (w/v) B-DDM at 4 °C and concentrated to
50 uM with an Amicon Ultra-4 concentrator unit with a MWCO of 50 kDa. 10 mM
ATP, 3 mM MgCl,, and a 5-fold molar excess of BMOE over transporter were
added and the cross-linking mixture incubated for 3 h at 30 °C. The mixture was
diluted 5-fold and incubated with 3 C protease (1:10 w/w) overnight at 4 °C. The
cross-linked and Tag-free transporter was reloaded on a Ni-NTA gravity flow
column equilibrated with 20 mM Tris-HCl pH 7.5, 150 mM NaCl, 40 mM imi-
dazole and 0.03% (w/v) B-DDM. The sample was concentrated with Amicon Ultra-
4 concentrator units with a MWCO of 50 kDa, 10% (v/v) glycerol was added and
aliquots were flash-frozen in liquid nitrogen and stored at —80 °C ready for size-
exclusion chromatography. Cross-linked TM287/288_cl_L200CTM287/5224CTM288
with or without the 2xDtoA mutations was polished by size-exclusion chromato-
graphy using a Superdex 200 Increase 10/300 GL (GE Healthcare) column equi-
librated in 20 mM Tris-HCI pH 7.5, 150 mM NaCl and 0.03% (w/v) B-DDM at 4 °C
and concentrated to 1 mg/ml with an Amicon Ultra-4 concentrator unit with a
MWCO of 50 kDa and immediately used for alpaca immunizations.

Nanobody and sybody selections. For the selection of OF state-specific nano-
bodies, an alpaca was immunized with subcutaneous injections four times in two
week intervals, each time with 200 g purified cross-linked TM287/288(2xDtoA)
_cl_L200C™287/5224CTM288 i 20 mM Tris-HCl pH 7.5, 150 mM NaCl, and
0.03% (w/v) p-DDM. Immunizations of alpacas were approved by the Cantonal
Veterinary Office in Zurich, Switzerland (animal experiment licence nr. 188/2011).
Blood was collected two weeks after the last injection for the preparation of the
lymphocyte RNA, which was then used to generate cDNA by RT-PCR to amplify
the VHH/nanobody repertoire. Phage libraries were generated and two rounds of
phage display were performed against TM287/288(2xDtoA/EtoA) solubilized in f-
DDM in the presence of 2mM ATP-Mg. After the final phage display selection
round, 91.9-fold enrichment was determined by qPCR using AcrB as background.
The enriched nanobody library was subcloned into pSb_init by FX cloning and
94 single clones were analyzed by ELISA in the presence of 1 mM ATP-Mg. The 27
positive ELISA hits were Sanger sequenced and grouped in three families according
to their CDR3 length and sequence (among them was Nb_TM#1). In another
selection cross-linked TM287/288_cl_L200CTM287/§224CTM288 was used for
alpaca immunizations resulting in 51 positive ELISA hits, of which 24 were Sanger
sequenced and grouped into four binder families (among them was Nb_TM#2).

Sybodies were selected against TM287/288(E517A) in B-DDM in presence of 1
mM ATP-Mg with our in vitro selection platform!4. After the second round of
phage display, single clones were analyzed for binding against TM287/288(E517A)
in presence of ATP-Mg by ELISA. Sequencing of 48 ELISA positives resulted in 40
unique sybody sequences!.

Spin labeling for DEER. TM287/288 cysteine variants were expressed as described
above and purified by Ni-NTA affinity chromatography in presence of 2mM DTT.
For spin labeling, DTT was removed on a PD-10 column (GE Healthcare, 17-0851-
1) equilibrated with 20 mM Tris-HCI pH 7.5, 150 mM NaCl, and 0.03% -DDM
and MTSL [(1-0xyl-2,2,5,5-tetramethyl- A3-pyrroline-3-methyl)methanethiosulfo-
nate, Toronto Research] was added in a 10-fold molar excess and incubated at 4 °C
overnight. Free spin-label was removed by size-exclusion chromatography on a
Superdex 200 Increase 10/300 GL (GE Healthcare) column equilibrated in 20 mM
Tris-HCI pH 7.5, 150 mM NaCl, and 0.03% (w/v) p-DDM at 4 °C. The samples
were concentrated to 30-50 uM with Amicon Ultra-4 concentrator units with a
MWCO of 50 kDa, flash-frozen in liquid nitrogen and stored at —80 °C ready for
DEER experiments. The pairs 131TM288/248TM288 apd 460TM287/363TM288 yere
already used in previous studies®?, whereas the extracellular spin-label pairs
54TM287/771TM287 and 54TM287/290TM288 were constructed as part of this study
and their ATPase activities were determined (Supplementary Table 3).

For site-specific spin labeling of Sb_TM#35, a single cysteine was introduced in
the framework of the sybody at position 71 by site-directed mutagenesis.
Sb_TM#35_S71C was expressed from pBXNPHM3 as described above. Cells were
harvested and resuspended in PBS pH 7.4 and 2 mM DTT supplemented with
DNase (Sigma) and disrupted with an M-110P Microfluidizer® (Microfluidics™).
The supernatant, supplemented with 20 mM imidazole, was loaded on a Ni-NTA
gravity flow column, washed with 20 column volumes PBS pH 7.4, 50 mM
imidazole and 2 mM DTT and eluted with 4 column volumes PBS pH 7.4, 300 mM
imidazole and 2 mM DTT.

In a next step Sb_TM#35_S71C fused to His-tagged MBP was incubated with 3
C protease (1:10 w/w), while dialyzing against PBS pH 7.4 and 2 mM DTT
overnight at room temperature. Cleaved sybody was reloaded on a Ni-NTA gravity
flow column and eluted with three column volumes PBS pH 7.4, 40 mM imidazole
and 2 mM DTT, followed by size-exclusion chromatography using a Sepax-
SRT10C SEC-300 (Sepax Technologies) column equilibrated with PBS pH 7.4 and
2mM DTT. Peak fractions were collected and DTT removed using a PD-10
column (GE Healthcare, 17-0851-1) equilibrated with degassed PBS pH 7.0 at 4 °C.
To avoid DTT take-over, the sybodies were eluted with 3.2 ml degassed PBS pH
7.0, instead of the 3.5 ml suggested by the manufacturer. The elution was
concentrated to 2.5 ml using an Amicon concentrator unit with a 3 kDa MWCO. 5-
fold molar excess MTSL was added to the sample and incubated for 1h on ice, a
condition which was previously reported to prevent labeling of the buried cysteines
that form the universally conserved disulfide bond of nanobodies**. Free label was
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removed and buffer exchanged using a PD-10 column (GE Healthcare, 17-0851-1)
equilibrated with 20 mM Tris-HCl pH 7.5 and 150 mM NaCl. In order to avoid
MTSL take-over, the sybodies were eluted with 3.2 ml 20 mM Tris-HCI pH 7.5 and
150 mM NaCl. Spin-labeled sybodies were concentrated to the desired
concentration with an Amicon Ultra-4 concentrator unit with a 3 kDa MWCO and
flash-frozen in liquid nitrogen and stored at —80 °C. Site-specific labeling was
confirmed and quantified by mass spectrometry.

DEER measurements. The labeling efficiency of the double cysteine mutants of the
transporters solubilized in detergent was measured by comparing the second
integral of the spectra detected at 25 °C using an X-band Miniscope 400 EPR
spectrometer (Magnettech by Freiberg Instruments) with that of a standard
TEMPOL solution in water. The calculated spin labeling efficiencies of the twelve
mutants ranged between 80% and 90%. For DEER measurements, 10% (v/v) Dg-
glycerol was added as cryoprotectant. The range of final transporter concentrations
was 15 to 25 uM. The sample (40 ul) was loaded in quartz tubes with 3 mm outer
diameter. The ATP-EDTA sample contained 2.5 mM ATP and 2.5 mM ethylene-
diaminetetraacetate (EDTA) to completely inhibit ATP hydrolysis; samples were
incubated at 25 °C for 10 min and snap-frozen in liquid nitrogen. For vanadate
trapping, samples were incubated with 5 mM sodium orthovanadate, 2.5 mM ATP
and 2.5 mM MgCl, for 3 min at 50 °C and snap-frozen in liquid nitrogen. The
unlabeled Sb_TM#35 was added to the TM287/288 in ~1.3:1 stoichiometric ratio.
To measure sybody-transporter distances, Sb_TM#35 spin-labeled at position 71
was added in a 0.5:1 stoichiometric ratio to the singly-labeled TM287/288 mutants
(54287 and 271TM287) in the presence of ATP-EDTA.

Double electron-electron resonance (DEER) measurements were performed at
50 K on a Bruker ELEXSYS E580Q-AWG (arbitrary waveform generator) pulse Q-
band spectrometer equipped with a 150 W TWT amplifier. A 4-pulse DEER
sequence with Gaussian, non-selective observer and pump pulses of 32 or 34 ns
length (corresponding to 14 or 16 ns FWHM) with 100 MHz frequency separation
was used. Due to the coherent nature of the AWG generated pulses, a four-step
phase cycling (0-m/2-n-3/2m) of the pump pulse was performed together with 0-mt
phase cycling of the observer pulses to remove unwanted effects of running echoes
from the DEER trace. The evaluation of the DEER data was performed using
DeerAnalysis2015%°. The background of the primary DEER traces was corrected
using stretched exponential functions with homogeneous dimensions of 1.8 to 3 for
different samples. A model-free Tikhonov regularization was used to extract
distance distributions from the background corrected form factors. The data of the
apo and ATP-EDTA states shown for the pairs 131TM288/248TM288 3nd 460TM287/
363TM288 in the absence of sybody are reproducible with respect to those
previously published®. Interspin distance simulations were performed with the
software MMM2015 using the MTSL ambient temperature library*6-47,

Transport assay. L. lactis NZ9000 AlmrAAlmrCD cells harboring the plasmids of
wild-type or mutant EfrEF were grown in M17 medium supplemented with 0.5%
glucose and 5 pg/ml chloramphenicol to an ODgqg of 0.4-0.6 at 30 °C and the
expression was induced by adding a nisin-containing culture supernatant of L.
lactis NZ9700 for 2h (1:1000 [v/v]). Cells were washed and resuspended using
fluorescence buffer (50 mM KP; pH 7.0 and 5 mM MgSO,). Cells were diluted to an
ODggp of 0.5 and energized by adding 0.5% glucose. The accumulation of 5 uM
ethidium was monitored at 30 °C using a Fluorescence Spectrometer LS-55 (Perkin
Elmer, Schwerzenbach, Switzerland). Excitation and emission wavelengths (and slit
widths) were set at 520 nm (10 nm) and 595 nm (15 nm)16:17,

Reconstitution into proteoliposomes. E. coli polar lipids extracted from E. coli
total lipids (Avanti lipids 100500 P) and L-a-Phosphatidylcholine (from egg yolk,
Type XVI-E, > 99% (TLC) P3556 Sigma) were dissolved in chloroform. Lipids were
mixed in a 3:1 (w/w) ratio, chloroform was evaporated and dried lipids were
dissolved in reconstitution buffer (50 mM K-HEPES pH 7.0). Lipids were sonicated
to generate small unilamellar vesicles (SUVs). SUVs were flash-frozen in liquid
nitrogen and thawed four times to fuse the SUVs to large multilamellar vesicles
(LMVs). Large unilamellar vesicles (LUVs) were finally formed by extruding LMV's
through a 400 nm polycarbonate filter. LUVs were diluted to a working con-
centration of 4 mg/ml and destabilized using 5.25 mM Triton X-100. Detergent-
purified EfrEF variants were added to the destabilized liposomes at a protein:lipid
ratio of 1:100. Detergent molecules were removed by four rounds of adding and
removing 200 mg Bio-Beads (SM-2 polystyrene beads, Bio-Rad). Proteoliposomes
were harvested by centrifugation (40’000 rpm, 70 Ti rotor, Beckman) and resus-
pended in 50 mM K-HEPES pH 7.0'°.

Surface plasmon resonance. Binding affinities were determined by surface plas-
mon resonance at 25 °C using a ProteOn™ XPR36 Protein Interaction Array System
(Biorad). Biotinylated TM287/288 variants were immobilized on ProteOn™ NLC
Sensor Chips at a density of 2000 RU. Nanobodies and sybodies expressed in
pSb_init were gel-filtrated in 20 mM Tris-HCI pH 7.5 and 150 mM NaCl, and the
SPR measurements were carried out in the same buffer containing 0.015% (w/v) -
DDM and either 1 mM MgCl, or 1 mM MgCl, and 0.5 mM ATP to measure
binding affinities in the absence or presence of ATP, respectively. Every mea-
surement was done once and the data fitted with a 1:1 interaction model using the

BioRad Proteon Analysis Software. In order to determine the half-lives of the OF
ATP-bound state of the different TM287/288 variants, all five biotinylated variants
were immobilized on a ProteOn™ NLC Sensor Chips at a density of 3000 RU. The
experiment was conducted in 20 mM Tris-HCI pH 7.5, 150 mM NaCl, 0.015% (w/
v) B-DDM, and 1 mM MgCl, or 2.5 mM EDTA at 25 °C at a flow-rate of 30 pl/min.
In order to charge the transporter variants with ATP-Mg or ATP-EDTA, buffer
containing 1 mM ATP together with either 1 mM MgCl, or 2.5 mM EDTA was
injected at the beginning of the experiment.

Nanodisc preparation. Membrane scaffold protein MSP1E3D1 was subcloned
from pINITIAL (provided by Prof. Raimund Dutzler) into pBXNH3 (addgene:
Plasmid #47067) by FX cloning®. Freshly transformed MC1061 E. coli cells were
grown in Terrific Broth (TB) medium supplemented 100 pg/ml ampicillin to an
ODggp of 1.0-1.5 at 37 °C and expression was induced by the addition of 0.0017%
(w/v) L-arabinose overnight at 22 °C. Cells were harvested, resuspended in lysis
buffer (20 mM Na-phosphate pH 7.4, 1% (v/v) Triton X-100 and 1 mM PMSF),
and disrupted with a M-110P Microfluidizer® (Microfluidics™). Cell debris were
pelleted at 8000 g for 30 min at 4 °C and the supernatant was loaded on a Ni-NTA
gravity flow column equilibrated with lysis buffer, washed with 10 column volumes
buffer 1 (40 mM Tris-HCI pH 8.0, 0.3 M NaCl and 1% (v/v) Triton X-100), 10
column volumes buffer 2 (buffer 1 + 50 mM sodium cholate), 10 column volumes
buffer A (40 mM Tris-HCI pH 8.0 and 0.3 M NaCl), 10 column volumes buffer A
containing 20 mM imidazole, and finally eluted with 4 column volumes buffer A
containing 300 mM imidazole. 3 C protease was added (1:10 w/w) and the sample
dialyzed overnight at 4 °C against 20 mM Tris-HCI pH 7.5, 150 mM NaCl, and 0.5
mM K-EDTA. The next day, 2mM MgCl, were added to the sample, which was
then reloaded on a Ni-NTA gravity flow column equilibrated with 20 mM Tris-HCl
pH 7.5, 150 mM NaCl, and 20 mM imidazole and eluted with two column volumes
using the same buffer. Buffer was exchanged by dialyzing three times against Tris-
HCI pH 7.5 and 0.5 mM K-EDTA for 1.5h at room temperature. The purified
membrane scaffold protein was concentrated to 60 mg/ml using an Amicon Ultra-4
concentrator unit with a 10 kDa MWCO, flash-frozen in liquid nitrogen, and
stored at —80 °C.

E. coli polar lipids (E. coli polar lipid extract, Avanti, 100600C) were mixed 3:1
(w/w) with L-a-phosphatidylcholine from egg yolk (Sigma, P3556) and chloroform
was evaporated. Dried lipids were dissolved in 20 mM HEPES pH 8.0, 0.5 mM K-
EDTA, 100 mM NaCl, and 100 mM cholate to a final concentration of 38 mg/ml
(50 mM), and filtered using a 0.22 puM filter. Lipids ready for nanodisc
reconstitutions were stored at —80 °C.

Purified, biotinylated TM287/288 variants solubilized in p-DDM were
reconstituted into nanodiscs using a 240:8:1 molar ratio of lipids:MSP1E3D1:
TM287/288. In order to spare membrane protein, the ideal lipid:MSP1E3D1
ratio was determined beforehand by reconstituting empty nanodiscs. Different
ratios were tested, ranging from 25:1 to 40:1 (lipid:MSP1E3D1). Empty
nanodiscs were loaded on a Superdex 200 Increase 10/300 GL (GE Healthcare)
column to separate empty nanodiscs from monomeric MSP1E3D1 and
aggregates. From the elution profile the optimal lipid:MSP1E3D]1 ratio of 30:1
was determined. The final cholate concentration in the reconstitution mixture
was adjusted to 30 mM. The mixture was incubated at 25 °C for 20 min while
rocking at 650 rpm. Then, 200 mg bio-beads were added to 200 l reconstitution
mixture, which was incubated overnight at 4 °C while rocking at 1000 rpm. Bio-
beads were removed using 0.1 um PVDF spin-filters. Full nanodiscs were
separated from empty nanodiscs by gel filtration using a Superdex 200 Increase
10/300 GL (GE Healthcare) equilibrated with 20 mM Tris-HCI pH 7.5 and 150
mM NaCl. The SEC profile as well as a SDS-PAGE analysis of nanodisc-
reconstituted TM287/288 is shown in Supplementary Fig. 2c. TM287/288
variants reconstituted in nanodiscs were either immediately used or flash-frozen
in liquid nitrogen and stored at —80 °C.

MD simulations. The simulation setup and parameters are equivalent to our
previous work!!. In brief, all-atom MD simulations of TM287/288 embedded in an
explicitly solvated POPC bilayer were carried out with GROMACS*3. It should be
noted that the source organism of TM287/288, the hyperthermophilic bacterium
Thermotoga maritima, has a unique lipid composition*®, which is difficult to
implement for MD simulations. For the simulations initiated from the IF structure
(PDB: 4Q4A), ATP-Mg was docked into the consensus site and D41TM287 and
D65TM288 wvere replaced by alanines. We conducted 20 individual simulations of
500 ns each (i.e., 10 ps in total) at 375 K. In addition, the OF state was simulated
starting from the crystal structure (PDB: 6QUZ) shown in Fig. 1a after removing
the sybody and replacing ATPyS by ATP. Furthermore, the same set of simulations
was carried out for the ATP-bound OF structure in which the 2xDtoA mutations
were introduced in silico (another 8 ps in total). In addition, the OF wild-type X-
ray structure was simulated in a POPE (instead of POPC) bilayer at 375K (ten
simulations of 500 ns each, i.e., 5 ys in total).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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Data availability

Data supporting the findings of this manuscript are available from the corresponding
authors upon reasonable request. A reporting summary for this Article is available as
a Supplementary Information file. The source data underlying Figs. 2b, 4c, d, g and
Supplementary Figs. 2a, b are provided as a Source Data file. The coordinates of the
TM287/288 structures have been deposited under accession numbers 6QUZ (Sb_TM#35,
ATPyS-bound), 6QV0 (Sb_TM#35, ATP-bound), 6QV1 (Nb_TM#1) and 6QV2
(Nb_TM#2). Sybody Sb_TM#35 and nanobodies Nb_TM#1 and Nb_TM#2 will be
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